|
--- |
|
license: mit |
|
language: |
|
- ko |
|
- en |
|
- zh |
|
base_model: |
|
- Qwen/Qwen3-1.7B |
|
pipeline_tag: summarization |
|
tags: |
|
- qwen3 |
|
- korean |
|
- summary |
|
- summarization |
|
- ko |
|
--- |
|
|
|
# qwen3-1.7B-ko-summary-finetuned-06-12 |
|
|
|
A fine-tuned Qwen3-1.7B model specialized for abstractive summarization of Korean documents, particularly academic papers. This model was trained on high-quality Korean paper summarization data and enhanced with emotional multi-turn conversation data to expand vocabulary and improve generation quality. |
|
|
|
## Model Description |
|
|
|
- **Architecture**: Qwen3-1.7B |
|
- **Fine-tuning Task**: Abstractive summarization |
|
- **Training Data**: Korean academic paper summaries (e.g., KoreaScience dataset) + Emotional multi-turn conversation data |
|
|
|
## Key Improvements |
|
|
|
1. **Resolved Token Repetition Issue**: Fixed meaningless token repetition problems from the previous colli98/qwen3-1.7B-ko-summary-finetuned model |
|
2. **Structured Summary Format**: Improved unstructured summary format issues for better coherence |
|
3. **Enhanced Vocabulary**: Added emotional multi-turn conversation training data to expand vocabulary range beyond academic papers |
|
|
|
## Intended Use |
|
|
|
- Summarizing long Korean documentsβespecially research papersβinto clear, concise overviews. |
|
- Integrating into research tools, educational platforms, or automated document-processing pipelines. |
|
|
|
## Performance Evaluation |
|
|
|
### ROUGE Score Comparison |
|
|
|
| Metric | Previous Model | Current Model | Improvement | |
|
| ------------------------ | -------------- | ------------- | ----------- | |
|
| **ROUGE-1 Precision** | 0.357 | 0.388 | **+8.7%** | |
|
| **ROUGE-1 Recall** | 0.189 | 0.174 | -7.9% | |
|
| **ROUGE-1 F-measure** | 0.247 | 0.241 | -2.4% | |
|
| **ROUGE-2 Precision** | 0.109 | 0.169 | **+55.0%** | |
|
| **ROUGE-2 Recall** | 0.058 | 0.076 | **+31.1%** | |
|
| **ROUGE-2 F-measure** | 0.075 | 0.104 | **+38.7%** | |
|
| **ROUGE-L Precision** | 0.269 | 0.328 | **+21.9%** | |
|
| **ROUGE-L Recall** | 0.142 | 0.147 | **+3.5%** | |
|
| **ROUGE-L F-measure** | 0.186 | 0.203 | **+9.1%** | |
|
| **ROUGE-Lsum Precision** | 0.316 | 0.319 | **+0.9%** | |
|
| **ROUGE-Lsum Recall** | 0.168 | 0.171 | **+1.8%** | |
|
| **ROUGE-Lsum F-measure** | 0.219 | 0.223 | **+1.8%** | |
|
|
|
### Performance Analysis |
|
|
|
**Positive Improvements:** |
|
|
|
- **Overall Precision Enhancement**: Improved precision across all metrics, indicating higher quality generated content |
|
- **Significant ROUGE-2 Improvement**: Major improvement in bigram-level metrics, suggesting more natural and coherent sentence structure generation |
|
|
|
**Trade-offs:** |
|
|
|
- **Partial Recall Decrease**: Slight decrease in recall, particularly in ROUGE-1, suggesting potential missed content from reference texts |
|
- **Room for Further Improvement**: All metrics remain below 0.4, indicating need for additional performance enhancements |
|
|
|
**Conclusion**: Fine-tuning improved **generation quality (precision)** while showing slight trade-offs in **completeness (recall)**. The significant ROUGE-2 improvement represents meaningful progress in model performance. |
|
|
|
 |
|
|
|
## Limitations & Risks |
|
|
|
- May produce inaccuracies or hallucinated content. |
|
- Not intended for generating verbatim legal/medical texts or for extractive quotation. |
|
- Users should verify critical facts against original sources. |
|
|
|
## Installation |
|
|
|
```bash |
|
pip install transformers safetensors |
|
``` |
|
|
|
## Usage |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("your-username/qwen3-1.7B-ko-summary-finetuned-06-12") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("your-username/qwen3-1.7B-ko-summary-finetuned-06-12") |
|
|
|
text = "μ¬κΈ°μ κΈ΄ νκ΅μ΄ λ
Όλ¬Έ ν
μ€νΈλ₯Ό μ
λ ₯νμΈμ..." |
|
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="longest") |
|
summary_ids = model.generate( |
|
**inputs, |
|
max_length=150, |
|
num_beams=4, |
|
early_stopping=True |
|
) |
|
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) |
|
print(summary) |
|
``` |
|
|
|
## Files in This Repository |
|
|
|
```bash |
|
. |
|
βββ config.json |
|
βββ generation_config.json |
|
βββ model.safetensors |
|
βββ model.safetensors.index.json |
|
βββ tokenizer.json |
|
βββ tokenizer_config.json |
|
βββ special_tokens_map.json |
|
βββ vocab.json |
|
βββ merges.txt |
|
βββ added_tokens.json |
|
``` |
|
|