datasetId
large_stringlengths
6
116
author
large_stringlengths
2
42
last_modified
large_stringdate
2021-04-29 15:34:29
2025-06-25 02:40:10
downloads
int64
0
3.97M
likes
int64
0
7.74k
tags
large listlengths
1
7.92k
task_categories
large listlengths
0
48
createdAt
large_stringdate
2022-03-02 23:29:22
2025-06-25 00:32:52
trending_score
float64
0
64
card
large_stringlengths
31
1.01M
parlange/dark-energy-survey-supernova
parlange
2025-04-17T05:16:35Z
13,843
1
[ "license:cc", "region:us" ]
[]
2025-03-16T08:00:01Z
0
--- license: cc homepage: https://portal.nersc.gov/project/dessn/autoscan/ datasets: - name: autoscan --- # autoscan ## Dataset Summary This dataset provides the training data for the autoscan algorithm described in Goldstein et al. (2015) for automated transient identification in the Dark Energy Survey Supernova program (DES-SN). It includes both feature measurements and postage stamp images for 898,963 detections. For more details, visit the [autoscan Project Homepage](https://portal.nersc.gov/project/dessn/autoscan/). ## Dataset Description The dataset was organized into two primary components: 1. **Features** - **File:** `autoscan_features.3.csv` (440MB) - **Content:** Contains class labels and 38 features (as detailed in Table 2 of Goldstein et al. 2015) computed over each detection. The file begins with a header that describes its structure. 2. **Images** - **Content:** Postage stamp images in both FITS and GIF formats. - **Organization:** The images were originally divided into 11 chunks provided as tar archives (as in autoscan website). - **File Sizes:** - Chunk 0: `stamps_0.tar` (5.6GB) - Chunk 1: `stamps_1.tar` (5.6GB) - Chunk 2: `stamps_2.tar` (5.6GB) - Chunk 3: `stamps_3.tar` (5.6GB) - Chunk 4: `stamps_4.tar` (5.6GB) - Chunk 5: `stamps_5.tar` (5.6GB) - Chunk 6: `stamps_6.tar` (5.6GB) - Chunk 7: `stamps_7.tar` (5.6GB) - Chunk 8: `stamps_8.tar` (5.6GB) - Chunk 9: `stamps_9.tar` (5.6GB) - Chunk 10: `stamps_10.tar` (254MB) The uncompressed images are reorganized into three main directories: `template`, `search`, and `difference`. Each of these directories further contains subfolders for `bogus` and `real` detections. ## Data Format for Binary Classification - **Features:** CSV format with headers explaining the 38 features and class labels. - **Images:** Tar archives uncompressed contain triplets organized into `template`, `search`, and `difference` folders with `bogus` and `real` class subdirectories. - `autoscan_training_data.zip` - `template/` -- `bogus/` -- `real/` - `search/` -- `bogus/` -- `real/` - `difference/` -- `bogus/` -- `real/` <img src="autoscan.png" alt="autoscan" width="900"> ## Citation - D. A. Goldstein, et al. 2015 "Automated Transient Identification in the Dark Energy Survey" AJ (accepted).
Thanarit/Thai-Voice-Test-Viewer-Fix
Thanarit
2025-06-02T15:16:34Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-02T15:11:16Z
0
--- dataset_info: features: - name: ID dtype: string - name: speaker_id dtype: string - name: Language dtype: string - name: audio dtype: audio: sampling_rate: 16000 - name: transcript dtype: string - name: length dtype: float32 - name: dataset_name dtype: string - name: confidence_score dtype: float64 splits: - name: train num_examples: 120 download_size: 0 dataset_size: 0 configs: - config_name: default data_files: - split: train path: data/train/*.parquet --- # Thanarit/Thai-Voice Combined Thai audio dataset from multiple sources ## Dataset Details - **Total samples**: 120 - **Total duration**: 0.13 hours - **Language**: Thai (th) - **Audio format**: 16kHz mono WAV - **Volume normalization**: -20dB ## Sources Processed 1 datasets in streaming mode ## Source Datasets 1. **GigaSpeech2**: Large-scale multilingual speech corpus ## Usage ```python from datasets import load_dataset # Load with streaming to avoid downloading everything dataset = load_dataset("Thanarit/Thai-Voice-Test-Viewer-Fix", streaming=True) # Iterate through samples for sample in dataset['train']: print(sample['ID'], sample['transcript'][:50]) # Process audio: sample['audio'] break ``` ## Schema - `ID`: Unique identifier (S1, S2, S3, ...) - `speaker_id`: Speaker identifier (SPK_00001, SPK_00002, ...) - `Language`: Language code (always "th" for Thai) - `audio`: Audio data with 16kHz sampling rate - `transcript`: Text transcript of the audio - `length`: Duration in seconds - `dataset_name`: Source dataset name (e.g., "GigaSpeech2", "ProcessedVoiceTH", "MozillaCommonVoice") - `confidence_score`: Confidence score of the transcript (0.0-1.0) - 1.0: Original transcript from source dataset - <1.0: STT-generated transcript - 0.0: Fallback transcript (e.g., [NO_TRANSCRIPT]) ## Processing Details This dataset was created using streaming processing to handle large-scale data without requiring full downloads. Audio has been standardized to 16kHz mono with -20dB volume normalization.
Toumimohameddhia/trocr1-medicaments
Toumimohameddhia
2025-03-01T12:59:10Z
16
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-25T09:18:21Z
0
--- dataset_info: features: - name: image_path dtype: string - name: text dtype: string splits: - name: train num_bytes: 236295.16669417397 num_examples: 5453 - name: test num_bytes: 26259.833305826043 num_examples: 606 download_size: 115868 dataset_size: 262555.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
gigant/tib_oreo_1k
gigant
2024-11-30T16:03:07Z
8
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-30T16:02:59Z
0
--- dataset_info: features: - name: doi dtype: string - name: title dtype: string - name: url dtype: string - name: video_url dtype: string - name: license dtype: string - name: subject dtype: string - name: genre dtype: string - name: release_year dtype: string - name: author dtype: string - name: contributors dtype: string - name: abstract dtype: string - name: transcript dtype: string - name: transcript_segments sequence: - name: id dtype: int32 - name: seek dtype: int32 - name: start dtype: float32 - name: end dtype: float32 - name: text dtype: string - name: tokens sequence: int32 - name: temperature dtype: float32 - name: avg_logprob dtype: float32 - name: compression_ratio dtype: float32 - name: no_speech_prob dtype: float32 - name: keyframes sequence: - name: slide dtype: string - name: frames sequence: int32 - name: timestamp sequence: float32 - name: language dtype: string - name: split_text sequence: string - name: labels sequence: float64 - name: oreo_extoracle dtype: string splits: - name: train num_bytes: 149058229 num_examples: 1000 download_size: 72700586 dataset_size: 149058229 configs: - config_name: default data_files: - split: train path: data/train-* ---
iambestfeed/synthetic-wiki
iambestfeed
2025-06-23T13:49:53Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-23T13:49:37Z
0
--- dataset_info: features: - name: anchor dtype: string - name: positive dtype: string - name: processed_generate_query dtype: string - name: id dtype: int64 splits: - name: train num_bytes: 181851544 num_examples: 98886 download_size: 92825566 dataset_size: 181851544 configs: - config_name: default data_files: - split: train path: data/train-* ---
doxa-friend/cot-chartqa_train
doxa-friend
2025-06-10T08:45:48Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-10T08:45:46Z
0
--- dataset_info: features: - name: messages list: - name: content list: - name: index dtype: int64 - name: text dtype: string - name: type dtype: string - name: role dtype: string - name: images sequence: string splits: - name: train num_bytes: 15313765 num_examples: 22561 download_size: 4869397 dataset_size: 15313765 configs: - config_name: default data_files: - split: train path: data/train-* ---
Forcewithme/mkldsajsers
Forcewithme
2024-12-04T15:53:47Z
19
0
[ "license:apache-2.0", "region:us" ]
[]
2024-12-04T15:28:06Z
0
--- license: apache-2.0 ---
antoine-444/ai2_arc_dataset
antoine-444
2025-05-30T20:44:12Z
52
0
[ "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-30T20:41:03Z
0
--- license: mit dataset_info: features: - name: dataset dtype: string - name: id dtype: string - name: question dtype: string - name: choices sequence: string - name: rationale dtype: 'null' - name: answer dtype: string splits: - name: train num_bytes: 330156 num_examples: 1119 - name: test num_bytes: 355036 num_examples: 1172 - name: validation num_bytes: 91307 num_examples: 299 download_size: 436525 dataset_size: 776499 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: validation path: data/validation-* ---
KcRiD/so100_test
KcRiD
2025-04-30T12:26:52Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "region:us", "LeRobot", "so100", "tutorial" ]
[ "robotics" ]
2025-04-30T12:26:45Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 2, "total_frames": 1040, "total_tasks": 1, "total_videos": 4, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
french-datasets/michsethowusu_french-malagasy_sentence-pairs
french-datasets
2025-05-20T10:02:33Z
0
0
[ "language:fra", "language:mlg", "region:us" ]
[]
2025-05-20T10:01:57Z
0
--- language: - fra - mlg viewer: false --- Ce répertoire est vide, il a été créé pour améliorer le référencement du jeu de données [michsethowusu/french-malagasy_sentence-pairs](https://huggingface.co/datasets/michsethowusu/french-malagasy_sentence-pairs).
dirganmdcp/yfinance_Indonesia_Stock_Exchange
dirganmdcp
2025-03-12T02:05:32Z
51
0
[ "license:apache-2.0", "region:us" ]
[]
2025-03-12T02:05:32Z
0
--- license: apache-2.0 ---
haorandai/Dec30_Clean_Bicycle_UF_10samples_5constraints
haorandai
2024-12-31T07:17:24Z
41
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-31T07:17:22Z
0
--- dataset_info: features: - name: image dtype: image - name: text dtype: string splits: - name: train num_bytes: 1635746.0 num_examples: 15 download_size: 613972 dataset_size: 1635746.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
jkazdan/gemma-2-9b-it-refusal-attack-gen3-10-HeX-PHI
jkazdan
2025-01-06T05:22:24Z
59
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-06T05:22:23Z
0
--- dataset_info: features: - name: prompt dtype: string - name: response dtype: string splits: - name: train num_bytes: 433069 num_examples: 300 download_size: 230663 dataset_size: 433069 configs: - config_name: default data_files: - split: train path: data/train-* ---
fabian-w/emea_en_ru_synthetic
fabian-w
2025-04-25T21:53:56Z
41
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-25T21:53:51Z
0
--- dataset_info: features: - name: en dtype: string - name: ru dtype: string splits: - name: train num_bytes: 19587528 num_examples: 91991 download_size: 7009273 dataset_size: 19587528 configs: - config_name: default data_files: - split: train path: data/train-* ---
mteb/CUADLiquidatedDamagesLegalBenchClassification
mteb
2025-05-06T11:54:48Z
0
0
[ "task_categories:text-classification", "annotations_creators:expert-annotated", "multilinguality:monolingual", "language:eng", "license:cc-by-4.0", "modality:text", "arxiv:2308.11462", "arxiv:2103.06268", "arxiv:2502.13595", "arxiv:2210.07316", "region:us", "mteb", "text" ]
[ "text-classification" ]
2025-05-06T11:54:44Z
0
--- annotations_creators: - expert-annotated language: - eng license: cc-by-4.0 multilinguality: monolingual task_categories: - text-classification task_ids: [] dataset_info: features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 3111 num_examples: 6 - name: test num_bytes: 80029 num_examples: 220 download_size: 47133 dataset_size: 83140 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* tags: - mteb - text --- <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md --> <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;"> <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">CUADLiquidatedDamagesLegalBenchClassification</h1> <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div> <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div> </div> This task was constructed from the CUAD dataset. It consists of determining if the clause awards either party liquidated damages for breach or a fee upon the termination of a contract (termination fee). | | | |---------------|---------------------------------------------| | Task category | t2c | | Domains | Legal, Written | | Reference | https://huggingface.co/datasets/nguha/legalbench | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["CUADLiquidatedDamagesLegalBenchClassification"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` <!-- Datasets want link to arxiv in readme to autolink dataset with paper --> To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @misc{guha2023legalbench, archiveprefix = {arXiv}, author = {Neel Guha and Julian Nyarko and Daniel E. Ho and Christopher Ré and Adam Chilton and Aditya Narayana and Alex Chohlas-Wood and Austin Peters and Brandon Waldon and Daniel N. Rockmore and Diego Zambrano and Dmitry Talisman and Enam Hoque and Faiz Surani and Frank Fagan and Galit Sarfaty and Gregory M. Dickinson and Haggai Porat and Jason Hegland and Jessica Wu and Joe Nudell and Joel Niklaus and John Nay and Jonathan H. Choi and Kevin Tobia and Margaret Hagan and Megan Ma and Michael Livermore and Nikon Rasumov-Rahe and Nils Holzenberger and Noam Kolt and Peter Henderson and Sean Rehaag and Sharad Goel and Shang Gao and Spencer Williams and Sunny Gandhi and Tom Zur and Varun Iyer and Zehua Li}, eprint = {2308.11462}, primaryclass = {cs.CL}, title = {LegalBench: A Collaboratively Built Benchmark for Measuring Legal Reasoning in Large Language Models}, year = {2023}, } @article{hendrycks2021cuad, author = {Hendrycks, Dan and Burns, Collin and Chen, Anya and Ball, Spencer}, journal = {arXiv preprint arXiv:2103.06268}, title = {Cuad: An expert-annotated nlp dataset for legal contract review}, year = {2021}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics <details> <summary> Dataset Statistics</summary> The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("CUADLiquidatedDamagesLegalBenchClassification") desc_stats = task.metadata.descriptive_stats ``` ```json { "test": { "num_samples": 220, "number_of_characters": 77388, "number_texts_intersect_with_train": 0, "min_text_length": 70, "average_text_length": 351.76363636363635, "max_text_length": 2526, "unique_text": 220, "unique_labels": 2, "labels": { "1": { "count": 110 }, "0": { "count": 110 } } }, "train": { "num_samples": 6, "number_of_characters": 3039, "number_texts_intersect_with_train": null, "min_text_length": 163, "average_text_length": 506.5, "max_text_length": 681, "unique_text": 6, "unique_labels": 2, "labels": { "1": { "count": 3 }, "0": { "count": 3 } } } } ``` </details> --- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*
qfq/train_rawcot_o1_preview_noanswer
qfq
2024-11-28T03:07:04Z
19
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-28T02:56:46Z
0
--- dataset_info: features: - name: question dtype: string - name: solution dtype: string - name: attempt dtype: string - name: cot_type dtype: string - name: source_type dtype: string - name: metadata dtype: string - name: cot sequence: string splits: - name: train num_bytes: 8472226 num_examples: 1146 download_size: 3811067 dataset_size: 8472226 configs: - config_name: default data_files: - split: train path: data/train-* ---
Yuyeong/rw_pubmed_mdlr_2_mask
Yuyeong
2025-04-22T11:10:07Z
15
0
[ "size_categories:10M<n<100M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-22T10:40:12Z
0
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': '0' '1': '1' '2': '2' - name: group_idx dtype: int64 - name: node_idx dtype: int64 splits: - name: train_seed0 num_bytes: 2627952495.9067807 num_examples: 1577300 - name: validation_seed0 num_bytes: 3285565.4104660954 num_examples: 1972 - name: test_seed0 num_bytes: 3285565.4104660954 num_examples: 1972 - name: train_seed1 num_bytes: 2627952495.9067807 num_examples: 1577300 - name: validation_seed1 num_bytes: 3285565.4104660954 num_examples: 1972 - name: test_seed1 num_bytes: 3285565.4104660954 num_examples: 1972 - name: train_seed2 num_bytes: 2627952495.9067807 num_examples: 1577300 - name: validation_seed2 num_bytes: 3285565.4104660954 num_examples: 1972 - name: test_seed2 num_bytes: 3285565.4104660954 num_examples: 1972 - name: train_seed3 num_bytes: 2627952495.9067807 num_examples: 1577300 - name: validation_seed3 num_bytes: 3285565.4104660954 num_examples: 1972 - name: test_seed3 num_bytes: 3285565.4104660954 num_examples: 1972 - name: train_seed4 num_bytes: 2627952495.9067807 num_examples: 1577300 - name: validation_seed4 num_bytes: 3285565.4104660954 num_examples: 1972 - name: test_seed4 num_bytes: 3285565.4104660954 num_examples: 1972 - name: train_seed5 num_bytes: 2627952495.9067807 num_examples: 1577300 - name: validation_seed5 num_bytes: 3285565.4104660954 num_examples: 1972 - name: test_seed5 num_bytes: 3285565.4104660954 num_examples: 1972 - name: train_seed6 num_bytes: 2627952495.9067807 num_examples: 1577300 - name: validation_seed6 num_bytes: 3285565.4104660954 num_examples: 1972 - name: test_seed6 num_bytes: 3285565.4104660954 num_examples: 1972 - name: train_seed7 num_bytes: 2627952495.9067807 num_examples: 1577300 - name: validation_seed7 num_bytes: 3285565.4104660954 num_examples: 1972 - name: test_seed7 num_bytes: 3285565.4104660954 num_examples: 1972 - name: train_seed8 num_bytes: 2627952495.9067807 num_examples: 1577300 - name: validation_seed8 num_bytes: 3285565.4104660954 num_examples: 1972 - name: test_seed8 num_bytes: 3285565.4104660954 num_examples: 1972 - name: train_seed9 num_bytes: 2627952495.9067807 num_examples: 1577300 - name: validation_seed9 num_bytes: 3285565.4104660954 num_examples: 1972 - name: test_seed9 num_bytes: 3285565.4104660954 num_examples: 1972 download_size: 13234228718 dataset_size: 26345236267.277115 configs: - config_name: default data_files: - split: train_seed0 path: data/train_seed0-* - split: validation_seed0 path: data/validation_seed0-* - split: test_seed0 path: data/test_seed0-* - split: train_seed1 path: data/train_seed1-* - split: validation_seed1 path: data/validation_seed1-* - split: test_seed1 path: data/test_seed1-* - split: train_seed2 path: data/train_seed2-* - split: validation_seed2 path: data/validation_seed2-* - split: test_seed2 path: data/test_seed2-* - split: train_seed3 path: data/train_seed3-* - split: validation_seed3 path: data/validation_seed3-* - split: test_seed3 path: data/test_seed3-* - split: train_seed4 path: data/train_seed4-* - split: validation_seed4 path: data/validation_seed4-* - split: test_seed4 path: data/test_seed4-* - split: train_seed5 path: data/train_seed5-* - split: validation_seed5 path: data/validation_seed5-* - split: test_seed5 path: data/test_seed5-* - split: train_seed6 path: data/train_seed6-* - split: validation_seed6 path: data/validation_seed6-* - split: test_seed6 path: data/test_seed6-* - split: train_seed7 path: data/train_seed7-* - split: validation_seed7 path: data/validation_seed7-* - split: test_seed7 path: data/test_seed7-* - split: train_seed8 path: data/train_seed8-* - split: validation_seed8 path: data/validation_seed8-* - split: test_seed8 path: data/test_seed8-* - split: train_seed9 path: data/train_seed9-* - split: validation_seed9 path: data/validation_seed9-* - split: test_seed9 path: data/test_seed9-* ---
lt-s/so100_train_move_red_block_tray_to_red_dish_flip
lt-s
2025-06-10T07:29:51Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "train" ]
[ "robotics" ]
2025-06-10T02:48:28Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - LeRobot - train configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 20, "total_frames": 4846, "total_tasks": 1, "total_videos": 40, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:20" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.center_cam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.right_cam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
Thierrix/filtered_rag_docs
Thierrix
2025-06-03T14:08:40Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T14:08:39Z
0
--- dataset_info: features: - name: text dtype: string - name: metadata dtype: string splits: - name: train num_bytes: 54813 num_examples: 100 download_size: 33947 dataset_size: 54813 configs: - config_name: default data_files: - split: train path: data/train-* ---
21uyennt/bahnar
21uyennt
2025-05-20T10:39:00Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-20T10:38:37Z
0
--- dataset_info: - config_name: en-ba features: - name: translation struct: - name: ba dtype: string - name: en dtype: string splits: - name: train num_bytes: 4738409 num_examples: 21801 - name: validation num_bytes: 518867 num_examples: 2423 - name: test num_bytes: 187503 num_examples: 1000 download_size: 3098061 dataset_size: 5444779 - config_name: en-vi features: - name: translation struct: - name: en dtype: string - name: vi dtype: string splits: - name: train num_bytes: 3341942 num_examples: 18719 download_size: 2013905 dataset_size: 3341942 configs: - config_name: en-ba data_files: - split: train path: en-ba/train-* - split: validation path: en-ba/validation-* - split: test path: en-ba/test-* - config_name: en-vi data_files: - split: train path: en-vi/train-* ---
BurakkTalha/programming-languages-and-frameworks-alpaca
BurakkTalha
2025-04-14T08:45:29Z
24
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-14T08:41:19Z
0
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string splits: - name: train num_bytes: 34769479.45720831 num_examples: 148497 - name: test num_bytes: 3863353.542791687 num_examples: 16500 download_size: 10024776 dataset_size: 38632833.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
Charan-1007/new_dataset
Charan-1007
2025-02-03T10:30:53Z
16
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-03T10:30:47Z
0
--- dataset_info: features: - name: Question_ID dtype: int64 - name: Question_text dtype: string - name: answer_text dtype: string - name: Module dtype: int64 - name: Assessment_Type dtype: string - name: Subject dtype: string - name: Question_ALT dtype: string - name: Question_URL dtype: string - name: Answer_URL dtype: string - name: User_ID dtype: string splits: - name: train num_bytes: 1386271 num_examples: 3695 download_size: 600908 dataset_size: 1386271 configs: - config_name: default data_files: - split: train path: data/train-* ---
Qipei/eval_act_task_picbrick0
Qipei
2025-05-15T15:08:47Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-05-15T15:08:36Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "trossen_subversion": "v1.0", "robot_type": "trossen_ai_mobile", "total_episodes": 5, "total_frames": 923, "total_tasks": 1, "total_videos": 15, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:5" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 16 ], "names": [ "linear_vel", "angular_vel", "left_joint_0", "left_joint_1", "left_joint_2", "left_joint_3", "left_joint_4", "left_joint_5", "left_joint_6", "right_joint_0", "right_joint_1", "right_joint_2", "right_joint_3", "right_joint_4", "right_joint_5", "right_joint_6" ] }, "observation.state": { "dtype": "float32", "shape": [ 19 ], "names": [ "odom_x", "odom_y", "odom_theta", "linear_vel", "angular_vel", "left_joint_0", "left_joint_1", "left_joint_2", "left_joint_3", "left_joint_4", "left_joint_5", "left_joint_6", "right_joint_0", "right_joint_1", "right_joint_2", "right_joint_3", "right_joint_4", "right_joint_5", "right_joint_6" ] }, "observation.images.cam_high": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.cam_left_wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.cam_right_wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
HumanoidTeam/aloha_cube_binary_old_format_v1_test_2
HumanoidTeam
2025-02-25T22:37:17Z
17
0
[ "task_categories:robotics", "region:us", "LeRobot" ]
[ "robotics" ]
2025-02-25T22:37:10Z
0
--- task_categories: - robotics tags: - LeRobot --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
HappyAIUser/ATCgpt-Fixed
HappyAIUser
2024-12-07T03:51:25Z
21
0
[ "task_categories:text-generation", "task_categories:text2text-generation", "language:en", "license:apache-2.0", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "conversational", "instruction-tuning" ]
[ "text-generation", "text2text-generation" ]
2024-12-07T03:51:21Z
0
--- license: apache-2.0 task_categories: - text-generation - text2text-generation language: - en size_categories: - 1K<n<10K tags: - conversational - instruction-tuning --- # Dataset Card for ATCgpt-Fixed This dataset contains instruction-input-output pairs converted to ShareGPT format, designed for instruction tuning and text generation tasks. ## Dataset Description The dataset consists of carefully curated instruction-input-output pairs, formatted for conversational AI training. Each entry contains: - An instruction that specifies the task - An optional input providing context - A detailed output that addresses the instruction ## Usage This dataset is particularly suitable for: - Instruction tuning of language models - Training conversational AI systems - Fine-tuning for specific domain knowledge
KellinP/filtered_selfplay_skeleton
KellinP
2025-02-04T11:11:10Z
24
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-04T11:07:58Z
0
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 681488 num_examples: 296 download_size: 319020 dataset_size: 681488 configs: - config_name: default data_files: - split: train path: data/train-* ---
Celiadraw/text-to-mermaid
Celiadraw
2024-06-27T14:19:12Z
58
5
[ "task_categories:text-generation", "language:en", "size_categories:1K<n<10K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-generation" ]
2024-06-24T17:04:59Z
1
--- task_categories: - text-generation language: - en pretty_name: text_to_mermaid size_categories: - 10M<n<100M ---
electricsheepafrica/Percentage-Of-15-Years-Old-Girls-Received-The-for-African-Countries
electricsheepafrica
2025-06-21T13:39:27Z
0
0
[ "license:apache-2.0", "size_categories:n<1K", "format:csv", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-21T13:39:25Z
0
--- license: apache-2.0 --- # Percentage of 15 years old girls received the recommended doses of HPV vaccine for African Countries ## Dataset Description This dataset contains 'Percentage of 15 years old girls received the recommended doses of HPV vaccine' data for all 54 African countries, sourced from the World Health Organization (WHO). The data is structured with years as rows and countries as columns, facilitating time-series analysis. Missing values have been handled using linear interpolation followed by forward and backward filling to ensure a complete dataset. ## How to Use You can load the data using pandas: ```python import pandas as pd df = pd.read_csv('hf://datasets/electricsheepafrica/Percentage-Of-15-Years-Old-Girls-Received-The-for-African-Countries/percentage_of_15_years_old_girls_received_the_recommended_doses_of_hpv_vaccine.csv') print(df.head()) ```
AdleBens/test7
AdleBens
2025-02-18T14:28:23Z
40
0
[ "task_categories:robotics", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "phosphobot", "so100", "phospho-dk1" ]
[ "robotics" ]
2025-02-18T14:27:43Z
0
--- tags: - phosphobot - so100 - phospho-dk1 task_categories: - robotics --- # test7 **This dataset was generated using a [phospho dev kit](https://robots.phospho.ai).** This dataset contains a series of episodes recorded with a robot and multiple cameras. It can be directly used to train a policy using imitation learning. It's compatible with LeRobot and RLDS.
FrancophonIA/NTEU_French-Estonian
FrancophonIA
2025-03-29T22:56:54Z
10
0
[ "task_categories:translation", "language:est", "language:fra", "region:us" ]
[ "translation" ]
2024-11-17T21:54:00Z
0
--- language: - est - fra multilingulality: - multilingual task_categories: - translation viewer: false --- > [!NOTE] > Dataset origin: https://live.european-language-grid.eu/catalogue/corpus/7219/ ## Description This is a compilation of parallel corpora resources used in building of Machine Translation engines in NTEU project (Action number: 2018-EU-IA-0051). Data in this resource are compiled in two TMX files, two tiers grouped by data source reliablity. Tier A -- danta originating from human edited sources, translation memories and alike. Tier B -- danta originating created by automatic aligning parallel data from miscellaneous web and parallel documents sources. The subsequent sections list all the sources contained in this parallel corpus. Tier A: ------- A parallel corpus "EAC-TM" collected for reuse from "Language Technology Resources page of EU Science Hub", https://ec.europa.eu/jrc/en/language-technologies/eac-translation-memory, licensed under CC-BY-4.0 license license and in accordance with EC Legal Disclaimer https://ec.europa.eu/info/legal-notice_en. A parallel corpus "DGT-TM" collected for reuse from "Language Technology Resources page of EU Science Hub", https://ec.europa.eu/jrc/en/language-technologies/dgt-translation-memory. The DGT-TM database is the exclusive property of the European Commission. The Commission cedes its non-exclusive rights free of charge and world-wide for the entire duration of the protection of those rights to the re-user, for all kinds of use which comply with the conditions laid down in the Commission Decision of 12 December 2011 on the re-use of Commission documents, published in Official Journal of the European Union L330 of 14 December 2011, pages 39 to 42. Any re-use of the database or of the structured elements contained in it is required to be identified by the re-user, who is under an obligation to state the source of the documents used: the website address, the date of the latest update and the fact that the European Commission retains ownership of the data. A parallel corpus "ECDC-TM" as published under a non-standard license, Free reuse with attribution. A parallel corpus "DCEP" as published under a non-standard license, reuse permitted, attribution required. A glossary of terms corpus "IATE Terminology" collected for reuse from "IATE web site", as published under a non-standard license, reuse permitted, attribution required. A parallel corpus "EU Constitution" collected for reuse from "OPUS web site", http://opus.nlpl.eu/EUconst.php as Public domain from OPUS. A parallel corpus "JRC-Acquis" collected for reuse from "OPUS web site", http://opus.nlpl.eu/JRC-Acquis.php as Public domain from OPUS. Tier B: ------- A parallel corpus "OPUS - ECB" as Public domain from OPUS. A parallel corpus "EU-Bookshop" collected for reuse from "OPUS web site", https://opus.nlpl.eu/EUbookshop.php as Public domain from OPUS. A parallel corpus "Europarl v6" collected for reuse from "STATMT web site", https://www.statmt.org/europarl/archives.html#v6 as published as public domain (StatMT: "We are not aware of any copyright restrictions of the material"). A parallel corpus "OPUS - EMEA" collected for reuse from "OPUS web site", https://opus.nlpl.eu/ as published as public domain, no license assigned. Original data originating from "European Medicines Agency", https://www.ema.europa.eu/en. ## Citation ``` Compilation of Estonian-French parallel corpora resources used for training of NTEU Machine Translation engines. (2021). Version unspecified. [Dataset (Text corpus)]. Source: European Language Grid. https://live.european-language-grid.eu/catalogue/corpus/7219 ```
enip2473/environmental-dialogue
enip2473
2024-12-26T05:13:21Z
57
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-26T03:31:56Z
0
--- dataset_info: features: - name: user_text dtype: string - name: machine_text dtype: string - name: user_voice dtype: audio - name: machine_voice dtype: audio splits: - name: train num_bytes: 56335863564.0 num_examples: 40000 download_size: 46160058432 dataset_size: 56335863564.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
GitBag/llama3-ultrafeedback-reasoning-iter_3-1731243878-armo-tokenized
GitBag
2024-11-13T05:34:45Z
17
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-13T05:34:25Z
0
--- dataset_info: features: - name: prompt dtype: string - name: augmented_prompt dtype: string - name: shared_thought sequence: string - name: chosen_ts sequence: string - name: chosen_ts_reward dtype: float64 - name: reject_ts sequence: string - name: reject_ts_reward dtype: float64 - name: augmented_prompt_llama dtype: string - name: augmented_prompt_llama_token sequence: int64 - name: chosen_ts_llama dtype: string - name: chosen_ts_llama_token sequence: int64 - name: reject_ts_llama dtype: string - name: reject_ts_llama_token sequence: int64 splits: - name: train num_bytes: 2496893646.5009623 num_examples: 56154 - name: test num_bytes: 44465107.49903769 num_examples: 1000 download_size: 403228395 dataset_size: 2541358754.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
test-gen/humaneval_qwen-7b-random_t0.0_n1_generated_tests_updated
test-gen
2025-05-23T02:41:37Z
27
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-15T02:40:25Z
0
--- dataset_info: features: - name: task_id dtype: string - name: prompt dtype: string - name: canonical_solution dtype: string - name: test dtype: string - name: entry_point dtype: string - name: verification_info struct: - name: language dtype: string - name: test_cases sequence: string - name: new_verification_info struct: - name: language dtype: string - name: test_cases sequence: string splits: - name: test num_bytes: 239635 num_examples: 164 download_size: 100525 dataset_size: 239635 configs: - config_name: default data_files: - split: test path: data/test-* ---
mlfoundations-dev/numina_filtered
mlfoundations-dev
2025-01-23T21:22:29Z
13
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-23T16:49:27Z
0
--- dataset_info: features: - name: source dtype: string - name: problem dtype: string - name: solution dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 439887997.359095 num_examples: 151522 download_size: 340049108 dataset_size: 439887997.359095 configs: - config_name: default data_files: - split: train path: data/train-* ---
MohamedAshraf701/query-response-dataset
MohamedAshraf701
2024-10-22T19:47:52Z
17
2
[ "language:en", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "question&Answer" ]
[]
2024-10-22T17:29:59Z
0
--- license: apache-2.0 dataset_info: features: - name: Query dtype: string - name: ShortResponse dtype: string - name: DetailedResponse dtype: string splits: - name: train num_bytes: 181752 num_examples: 1426 download_size: 85206 dataset_size: 181752 configs: - config_name: default data_files: - split: train path: data/train-* language: - en tags: - question&Answer pretty_name: Question & Answer size_categories: - 1K<n<10K --- # Query Response Dataset ## Overview The **Query Response Dataset** is designed to provide a rich set of question-answer pairs, ideal for training AI models in natural language processing (NLP) tasks. This dataset contains structured query-response data that can be utilized for various applications, including chatbots, virtual assistants, and customer support systems. ### Dataset Details - **Number of Entries**: 1.5K - **Fields**: - **Query**: The question or inquiry made by a user. - **ShortResponse**: A concise answer to the query. - **DetailedResponse**: An expanded explanation or answer to the query. ## Purpose This dataset is intended for researchers and developers who are building applications that require understanding and generating human-like responses to queries. It can be used to improve the performance of conversational AI systems and enhance user interactions. ## Features - **Diverse Questions**: The dataset covers a wide range of topics, ensuring that models trained on this data can handle various user inquiries. - **Structured Format**: The dataset is organized in a clear, structured format, making it easy to ingest and use in machine learning workflows. ## Usage You can load this dataset using the `datasets` library from Hugging Face: ```python from datasets import load_dataset dataset = load_dataset("MohamedAshraf701/query-response-dataset") ``` ### Example Usage Here is a simple example of how to access data from the dataset: ```python # Accessing the first entry first_entry = dataset['train'][0] print("Query:", first_entry['Query']) print("Short Response:", first_entry['ShortResponse']) print("Detailed Response:", first_entry['DetailedResponse']) ``` ## Contributions Contributions to this dataset are welcome! If you have additional questions or response pairs to add, feel free to open an issue or submit a pull request. ## License This dataset is licensed under the [MIT License](LICENSE). ## Contact For any inquiries or support, please reach out to [[email protected]](mailto:[email protected]).
timpal0l/swedish_reviews
timpal0l
2024-07-16T10:57:21Z
64
5
[ "task_categories:text-classification", "task_ids:sentiment-classification", "annotations_creators:found", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:sv", "license:unknown", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification" ]
2022-03-02T23:29:22Z
0
--- annotations_creators: - found language_creators: - found language: - sv license: - unknown multilinguality: - monolingual size_categories: - 100K<n<1M source_datasets: - original task_categories: - text-classification task_ids: - sentiment-classification pretty_name: Swedish Reviews dataset_info: config_name: plain_text features: - name: text dtype: string - name: label dtype: class_label: names: '0': negative '1': positive splits: - name: test num_bytes: 6296529 num_examples: 20697 - name: validation num_bytes: 6359215 num_examples: 20696 - name: train num_bytes: 18842863 num_examples: 62089 download_size: 19622770 dataset_size: 31498607 configs: - config_name: plain_text data_files: - split: test path: plain_text/test-* - split: validation path: plain_text/validation-* - split: train path: plain_text/train-* default: true --- # Dataset Card for Swedish Reviews ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [swedish_reviews homepage](https://github.com/timpal0l/swedish-sentiment) - **Repository:** [swedish_reviews repository](https://github.com/timpal0l/swedish-sentiment) - **Point of Contact:** [Tim Isbister](mailto:[email protected]) ### Dataset Summary The dataset is scraped from various Swedish websites where reviews are present. The dataset consists of 103 482 samples split between `train`, `valid` and `test`. It is a sample of the full dataset, where this sample is balanced to the minority class (negative). The original data dump was heavly skewved to positive samples with a 95/5 ratio. ### Supported Tasks and Leaderboards This dataset can be used to evaluate sentiment classification on Swedish. ### Languages The text in the dataset is in Swedish. ## Dataset Structure ### Data Instances What a sample looks like: ``` { 'text': 'Jag tycker huggingface är ett grymt project!', 'label': 1, } ``` ### Data Fields - `text`: A text where the sentiment expression is present. - `label`: a int representing the label `0`for negative and `1`for positive. ### Data Splits The data is split into a training, validation and test set. The final split sizes are as follow: | Train | Valid | Test | | ------ | ----- | ---- | | 62089 | 20696 | 20697 | ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data Various Swedish websites with product reviews. #### Initial Data Collection and Normalization #### Who are the source language producers? Swedish ### Annotations [More Information Needed] #### Annotation process Automatically annotated based on user reviews on a scale 1-5, where 1-2 is considered `negative` and 4-5 is `positive`, 3 is skipped as it tends to be more neutral. #### Who are the annotators? The users who have been using the products. ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data [More Information Needed] ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information [More Information Needed] ### Dataset Curators The corpus was scraped by @timpal0l ### Licensing Information Research only. ### Citation Information No paper exists currently. ### Contributions Thanks to [@timpal0l](https://github.com/timpal0l) for adding this dataset.
unai-gurbindo/neurips-weather-dataset
unai-gurbindo
2025-05-14T00:04:49Z
456
0
[ "task_categories:object-detection", "region:us", "self_driving", "data_augmentation", "object_detection" ]
[ "object-detection" ]
2025-05-04T16:35:29Z
0
--- task_categories: - object-detection tags: - self_driving - data_augmentation - object_detection pretty_name: D configs: # === Real-World Data Framework === - config_name: real_eval_default data_files: "Real-World Data Framework/Images/Evaluation Set Images/default/*" - config_name: real_eval_fog data_files: "Real-World Data Framework/Images/Evaluation Set Images/fog/*" - config_name: real_eval_night data_files: "Real-World Data Framework/Images/Evaluation Set Images/night/*" - config_name: real_eval_rain data_files: "Real-World Data Framework/Images/Evaluation Set Images/rain/*" - config_name: real_eval_snow data_files: "Real-World Data Framework/Images/Evaluation Set Images/snow/*" - config_name: real_train_default data_files: "Real-World Data Framework/Images/Trainable Set Images/default/*" - config_name: real_train_fog data_files: "Real-World Data Framework/Images/Trainable Set Images/fog/*" - config_name: real_train_night data_files: "Real-World Data Framework/Images/Trainable Set Images/night/*" - config_name: real_train_rain data_files: "Real-World Data Framework/Images/Trainable Set Images/rain/*" - config_name: real_train_snow data_files: "Real-World Data Framework/Images/Trainable Set Images/snow/*" # === Simulated Framework === - config_name: simulated_eval_default data_files: "Simulated Framework/Images/Evaluation Set Images/default/*" - config_name: simulated_eval_fog data_files: "Simulated Framework/Images/Evaluation Set Images/fog/*" - config_name: simulated_eval_night data_files: "Simulated Framework/Images/Evaluation Set Images/night/*" - config_name: simulated_eval_rain data_files: "Simulated Framework/Images/Evaluation Set Images/rain/*" - config_name: simulated_eval_snow data_files: "Simulated Framework/Images/Evaluation Set Images/snow/*" - config_name: simulated_train_default data_files: "Simulated Framework/Images/Trainable Set Images/default/*" - config_name: simulated_train_fog data_files: "Simulated Framework/Images/Trainable Set Images/fog/*" - config_name: simulated_train_night data_files: "Simulated Framework/Images/Trainable Set Images/night/*" - config_name: simulated_train_rain data_files: "Simulated Framework/Images/Trainable Set Images/rain/*" - config_name: simulated_train_snow data_files: "Simulated Framework/Images/Trainable Set Images/snow/*" --- # NeurIPS Weather Dataset ## Dataset Description and Motivation The **NeurIPS Weather Dataset** is a benchmark designed to develop and evaluate robust object detection models for autonomous driving under **adverse weather conditions**. Safety-critical systems like self-driving cars often struggle when a model trained in clear weather is deployed in drastically different conditions (fog, rain, snow, or night), due to **weather-induced domain shifts** that degrade detector performance. This dataset addresses that challenge by providing paired real and simulated image data across a variety of difficult weather scenarios. The goal is to facilitate research on domain adaptation and generalization, allowing models to learn invariances to weather changes and maintain high detection accuracy even in poor visibility or unusual conditions. Key motivations and features include: * **Robust Object Detection in Adverse Conditions:** The dataset was introduced in an IJCNN 2024 paper on all-weather object detection. It serves as a testbed for algorithms aimed at closing the performance gap between normal and harsh conditions. Researchers can quantify how much detection accuracy drops from clear weather to foggy, rainy, night-time, or snowy scenes and devise methods to mitigate this drop (e.g. data augmentation, domain adaptation, image enhancement, etc.). * **Real-World + Simulated Data Blend:** Collecting large-scale real images for every extreme weather is often impractical or unsafe (e.g. heavy rain or snow storms are rare and hazardous to capture). Therefore, this dataset leverages both real photographs and high-fidelity simulation. Real driving scenes (sourced from the BDD100K dataset) are augmented with synthetic weather effects, and complementary simulated scenes from the CARLA simulator provide fully controllable weather scenarios. This combination offers a rich and diverse set of conditions while ensuring ground-truth annotations are available for all images. * **Domain Shift Benchmark:** By organizing data into different weather domains, the dataset enables controlled experiments on domain shift. For example, one can train a detector on one domain (say clear weather) and test on another (like fog or night) to evaluate generalization. The provided data splits (explained below) include standard **baseline splits** to replicate such scenarios, as well as configurations for **augmentation experiments** where mixed-weather training is used to improve robustness. Overall, the dataset is meant to drive progress in making object detectors invariant to real-world weather changes. ## Dataset Structure **Figure: Dataset directory structure** – The NeurIPS Weather Dataset is structured into two main parts (or "frameworks"): a **Real-World Data Framework** and a **Simulated Data Framework**. Each framework contains subfolders for images under specific weather conditions, and each of those is further divided into a **Trainable Set** (training images) and an **Evaluation Set** (validation/testing images). All images come with corresponding bounding box annotations for objects of interest (vehicles, pedestrians, etc.), stored separately in a *Bounding Box Information* directory. The high-level organization is outlined below: * **Real-World Data Framework:** This portion consists of real driving images (originally from the BDD100K dataset, a large-scale driving database) that have been *augmented* to simulate various weather conditions. A Python script `bdd100k_weather_augmentation.py` is included in the dataset to document the augmentation process applied to the clear-weather source images. Five weather categories are provided in separate subfolders: * `default` – Clear daytime images (baseline real-world conditions without added effects). * `fog` – The same scenes with synthetic fog/haze applied (reduced visibility). * `night` – Images adjusted to low-light/night-time settings (darkened conditions and headlights/lighting effects). * `rain` – Images with rain effects (rain streaks, wet appearance) overlaid. * `snow` – Images with snow effects (snowfall and possibly accumulation) added. Every image in the real-world set has one or more annotated bounding boxes for objects such as cars, buses, trucks, pedestrians, cyclists, traffic lights, etc., following the standard BDD100K labeling schema (10 classes for common road objects). The **Trainable Set Images** and **Evaluation Set Images** directories under each weather category contain the training and test splits respectively. For instance, `Real-World Data Framework/Images/Trainable Set Images/fog/` holds training images under fog, and `.../Evaluation Set Images/fog/` holds foggy images reserved for evaluation. Similarly, all other weather subfolders are split into trainable vs. evaluation sets. This separation ensures that models can be trained and validated on disjoint sets of scenes. The exact file lists used in our experiments are provided (see **Data Splits** below), but users can also combine or resplit as needed for custom training regimes. * **Simulated Data Framework:** This part contains fully synthetic images generated using the **CARLA** autonomous driving simulator. CARLA’s built-in weather engine was used (via the `carla_weather_augmentation.py` script) to render the same virtual environments under different weather and lighting conditions. Four weather settings are included as subfolders: * `default` – Clear weather in the simulation (typically a daytime clear sky scenario). * `fog` – Foggy conditions in the simulator (reduced visibility distance, haze). * `night` – Night-time in the simulation (dark environment, possibly with street lighting or headlights). * `rain` – Rainy weather in CARLA (rainfall and wet road effects). *(Note: CARLA did not simulate snow in this dataset, so there is no `snow` category in the simulated branch.)* Each simulated image comes with ground-truth bounding boxes and labels for all rendered objects (e.g. vehicles, pedestrians) obtained directly from the simulator’s engine. The object classes correspond closely to the real data classes (e.g., car, truck, motorcycle, person, etc.), ensuring compatibility for cross-domain evaluation. The directory structure mirrors the real data: under **Images**, each weather folder has **Trainable Set Images** and **Evaluation Set Images** subfolders for training vs. testing images. The *Bounding Box Information* for simulated data contains the annotation files (in a similar format to the real data annotations) divided into **Trainable Set Labels** and **Evaluation Set Labels**. This simulated set provides a controlled environment to test algorithms’ ability to transfer learning from synthetic to real, or to use simulation to supplement real training data. * **Data Splits and Experiments:** In addition to the organized image folders, the dataset includes a `Data Splits` directory with text files listing the image IDs or file names for various experimental configurations. Specifically, under `Data Splits/Baseline Experiment/` you will find `train.txt`, `val.txt`, and `test.txt` which delineate a recommended split of the data for a baseline evaluation (for example, a typical baseline might train on the `Real-World/default` images and validate on other conditions – the exact usage is described in the paper). Another subdirectory `Data Augmentation Experiment/` contains split files used when training with augmented data (e.g. mixing multiple weather conditions in training). These splits were used in the IJCNN paper to compare different training strategies: * **Baseline experiment:** training on a narrow domain (e.g. clear-only training set) and testing on dissimilar domains (fog, rain, etc.) to quantify the domain gap. * **Augmentation experiment:** training on an expanded training set that includes augmented weather images or combined real+simulated data, and then evaluating on held-out sets to measure robustness gains. Researchers can use these provided splits to reproduce the paper’s results or as a starting point for their own experiments. Of course, you are free to ignore these and create custom train/test splits using the raw image folders, but the provided configurations ensure consistency with the benchmark as originally proposed. ## Using the Dataset **Loading via Hugging Face:** The dataset is hosted on Hugging Face Hub, which makes it straightforward to load using the `datasets` library in Python. Each image sample is packaged with its annotations for convenient access. For example, you can load the dataset as follows: ```python from datasets import load_dataset # Load the entire NeurIPS Weather Dataset (all images and annotations) dataset = load_dataset("neurips-weather-dataset") ``` This will download the dataset and prepare it for use. By default, the dataset may combine both real and simulated data; you can also load each subset separately if desired (depending on how the dataset is configured on the Hub). For instance: ```python # Load only the real-world subset real_data = load_dataset("neurips-weather-dataset", name="real_world") # Load only the simulated subset sim_data = load_dataset("neurips-weather-dataset", name="simulated") ``` *(Replace the dataset identifier with the correct namespace if applicable, e.g. `"your-username/neurips-weather-dataset"` in the code above, depending on the hosting.)* Each subset typically contains a training split and a validation/test split, accessible as `real_data['train']`, `real_data['test']`, etc. (or `sim_data['validation']`, depending on naming). You can iterate through the dataset like a regular PyTorch/TF dataset or convert it to Pandas, etc. **Data fields:** Each data example is a dictionary with at least the following fields: * `image`: the input image (typically as a PIL image or NumPy array, depending on `datasets` settings) of a traffic scene. * `bboxes`: the bounding box coordinates for each object in the image (e.g., in `[x_min, y_min, x_max, y_max]` format, or as normalized coordinates if specified by the loader). * `labels`: the class labels corresponding to each bounding box (e.g., integers or category names like "car", "pedestrian", etc.). The set of possible labels includes common road users and objects (vehicles of various types, pedestrians, traffic signs, etc., matching the BDD100K annotation classes). * `domain` (if provided): which framework the image is from (`"real"` or `"simulated"`), or this might be inferable from context if you load them separately. * `weather`: the weather condition category for that image (e.g., `"clear"`, `"fog"`, `"night"`, `"rain"`, `"snow"`). In the real-world data, `"snow"` appears only in augmented form; in the simulated data, `"snow"` is not present. * Other metadata: There might be additional info like an image ID, or the original source of the image (especially for real images, an ID referencing the BDD100K source frame). Using these fields, you can filter or group the data by condition. For example, you could take all `fog` images (across real and sim) to form a test set for a model, or use the `weather` label to apply condition-specific preprocessing in your pipeline. **Accessing images and labels:** If using the `datasets` library, each `dataset[split]` is an iterable of examples. For instance: ```python example = dataset['train'][0] img = example['image'] boxes = example['bboxes'] classes = example['labels'] print(example['weather'], example['domain']) ``` This would give you the first training image, its bounding boxes and labels, and print the weather condition and domain of that image. You can then visualize the image with boxes drawn, or feed it into a model. If you prefer to manually handle the data, you can also download the archive from Hugging Face and navigate the folder structure as described above (the folder names themselves indicate the domain and condition). ## Example Use Cases This dataset unlocks a variety of research and application possibilities in the field of autonomous driving and computer vision: * **Weather Robustness Benchmarking:** Evaluate how existing object detection models (e.g., YOLO, Faster R-CNN, SSD) trained on standard clear-weather data perform on foggy, rainy, nighttime, or snowy images. The NeurIPS Weather Dataset can be used to benchmark model robustness by reporting metrics (mAP, recall, etc.) separately on each weather condition. This helps identify failure modes; for example, one might find that a detector's performance drops significantly in fog compared to clear weather, highlighting the need for improvement. * **Domain Adaptation and Generalization:** Use the dataset to develop and test domain adaptation techniques. For instance, train a model on the **Simulated** images and then test it on the **Real-World** images (cross-domain testing). Since the simulated data is labeled and abundant, one could apply unsupervised domain adaptation to adapt the model from the synthetic domain to the real domain (with weather shifts in both). Conversely, domain generalization methods can be evaluated by training on multiple domains (e.g. mixing real and simulated, or mixing several weather conditions) and checking if the model generalizes to a new unseen condition. * **Data Augmentation Strategies:** The dataset facilitates experiments with data augmentation for robustness. Researchers can try augmenting clear-weather training images with various filters (defocus blur, color jitter, adding artificial rain streaks, etc.) – some of which are similar to the provided augmented set – and measure the impact on detection performance in adverse weather. The provided *augmentation experiment* split can serve as an example: by including the synthetic fog/rain/snow images in the training set, does the model become more weather-invariant? Users can test techniques like style transfer (making images look like different weather) or GAN-generated weather effects and compare with the baseline results using this dataset. * **All-Weather Model Development:** Train new object detection models explicitly on the union of all conditions to create an **all-weather detector**. Because the dataset includes a variety of conditions, one can train a single model with images from clear, fog, rain, night (and snow in real) all together. Example use cases include training a robust perception model for an autonomous vehicle that must operate 24/7 in any weather. The real and simulated combination can also be used to expand the diversity – e.g., use real images for normal conditions and simulated images to cover rarer conditions like heavy fog or extreme rain that are not well-represented in existing real datasets. * **Computer Vision Education and Demos:** The clear organization of this dataset makes it a good teaching tool for illustrating the effects of domain shift. Students can visually inspect images across domains – e.g., see how a scene looks in clear vs. foggy conditions – and then run a pre-trained detector to observe failure cases. This can motivate discussions on why certain weather affects the model (e.g., fog reduces contrast, night reduces visible detail) and how multi-domain training can help. Moreover, the simulated data can be used to demonstrate synthetic data generation and its benefits in a simple way. These are just a few examples. We anticipate that the NeurIPS Weather Dataset will be useful for any project that needs diverse driving images with annotations, especially where robustness to environmental conditions is a concern. Whether you are developing improved sensor fusion (combining camera with radar/LiDAR for bad weather), or trying out the latest domain generalization algorithm, this dataset provides a solid and realistic testbed. ## License ## Contact and Acknowledgments For any questions, feedback, or requests related to the NeurIPS Weather Dataset, you can reach out to the maintainers via the Hugging Face discussions on the dataset page or by contacting the authors directly. (You may find contact emails in the paper or the repository; alternatively, opening an Issue/Discussion on Hugging Face is a good way to get a response.) We hope this dataset enables fruitful research and innovation. If you use it or find it helpful, consider letting the authors know — and if you discover any issues or have suggestions for improvement, please share them! Together, we can advance the state of the art in all-weather, resilient object detection for autonomous systems. Happy experimenting, and safe driving in all conditions!
brygotti/NLP4Education_english_single_mcq_4_choices
brygotti
2025-05-21T21:14:16Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-21T21:14:16Z
0
--- dataset_info: features: - name: id dtype: string - name: question dtype: string - name: choices sequence: string - name: answer dtype: string splits: - name: test num_bytes: 712623 num_examples: 1962 download_size: 346616 dataset_size: 712623 configs: - config_name: default data_files: - split: test path: data/test-* ---
Odog16/so100_test_2.1
Odog16
2025-03-16T15:21:58Z
35
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "custom-task" ]
[ "robotics" ]
2025-03-16T15:19:45Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - custom-task configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 25, "total_frames": 11300, "total_tasks": 1, "total_videos": 50, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:25" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.workspace": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
jkazdan/jka
jkazdan
2024-12-30T19:27:30Z
14
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-30T19:22:00Z
0
--- dataset_info: features: - name: prompt dtype: string - name: response dtype: string splits: - name: train num_bytes: 90597 num_examples: 300 download_size: 41901 dataset_size: 90597 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_d18347e7-9f8e-46e7-b364-bf610886d967
argilla-internal-testing
2024-12-03T13:03:09Z
17
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-03T13:03:08Z
0
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
bghira/photo-concept-bucket
bghira
2024-04-12T02:25:31Z
255
56
[ "license:openrail++", "size_categories:100K<n<1M", "format:parquet", "modality:image", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-02-19T16:14:48Z
1
--- license: openrail++ --- ## Photo Concept Bucket The purpose of this dataset was to distribute a high quality, free-to-use dataset containing samples that require no attribution and have an open license. All of the images were captioned in a cluster containing: - 38x 3090 24G - 6x 4090 24G - 8x A5000 24G - 2x A100 80G - A couple volunteers running a 3090 or 4090. The model was running in fp8 precision using 🤗Transformers and 🤗Accelerate for easy multi-GPU captioning. The captioning was spread across 10 different systems, at a GPU rental cost of approx. $350 USD. ### General Information - **Dataset Name**: Photo Concept bucket - **Size**: 567,597 entries - **Columns**: 18 - **Memory Usage**: Approximately 78.0 MB - **Creator**: pseudoterminalx ### Column Descriptions - **id**: The original Unique identifier for each photo (integer). - This may be used to map the images back to their original, should any of the URL formats change. - **class_label**: Classification label for the photo (string). - These were the search term that resulted in the image being captured. - **type**: Type of image (e.g., photo, digital art) (string). - **slug**: A slug that points to this image. Maybe sometimes descriptive. (string). - **description**: Author-provided description of the photo. Many values are missing, some contain spam. (string). - **alt**: Alternative text for the photo, seemingly an auto-generated caption. Not very high quality. (string). - **created_at**: Timestamp when the photo was uploaded. (string). - **title**: Author-provided title of the photo (string, some missing values). - **location**: Location of the author, does not necessarily represent the location of the photo - though, many times, it does. (string, many missing values). - **tags**: Tags associated with the photo (string). - These seem to contain a lot of information, but they're not very accurate. - **main_color**: The dominant color in the photo (string). - **colors**: List of colors identified in the photo (string). - **width**: Width of the photo in pixels (integer). - **height**: Height of the photo in pixels (integer). - **aspect_ratio**: Aspect ratio of the photo (float). - **url**: URL to the photo (string). - **megapixels**: Megapixels of the photo (float). - **cogvlm_caption**: A CogVLM (fp8) caption derived from the query 'Caption this image as accurately as possible, without speculation. Describe what you see.' (string) ### Statistics - **id**: Range from 474 to 20,329,130 with an average of 13,679,720. - **Width**: Photos range in width from 684 to 24,538 pixels, with an average width of 4,393 pixels. - **Height**: Photos range in height from 363 to 26,220 pixels, with an average height of 4,658 pixels. - **Aspect Ratio**: Ranges from 0.228 to 4.928, with an average aspect ratio of approximately 1.016. - **Megapixels**: The dataset contains photos ranging from 0.54 to 536.8604 megapixels, with an average of 20.763 megapixels. ### Usage Examples This dataset can be used for a variety of machine learning tasks, including image classification, object detection, and color analysis. Users should take note of the high variability in image dimensions and the sparsity of the `description` and `location` columns. ### Known Issues - The `description` column has a significant number of missing values, which may limit its use for tasks requiring detailed textual information about the images. - There is variability in the presence of `title` and `location` information, with several entries missing these details. - The `tags` column contains a lot of noise, which may damage models that rely on these for tasks involving image classification or generation. --- This dataset card provides an overview of the dataset's structure, content, and some basic statistics. Depending on your specific use case or research needs, you may want to expand certain sections with additional details or examples.
PJMixers-Dev/OpenR1-Math-94k-conversational
PJMixers-Dev
2025-04-10T20:11:13Z
19
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-10T20:11:02Z
0
--- dataset_info: features: - name: task dtype: string - name: prompt list: - name: content dtype: string - name: role dtype: string - name: ground_truth dtype: string splits: - name: train num_bytes: 29648526.0 num_examples: 93733 download_size: 16357522 dataset_size: 29648526.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
tequilajerry/indiana-chestxray-captions-new
tequilajerry
2025-04-22T22:50:33Z
25
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-22T21:46:38Z
0
--- dataset_info: features: - name: image_path dtype: string - name: text dtype: string - name: image dtype: image splits: - name: train num_bytes: 12382022550.819 num_examples: 6469 download_size: 12252590426 dataset_size: 12382022550.819 configs: - config_name: default data_files: - split: train path: data/train-* ---
xchraf/close_box_3ep
xchraf
2025-01-26T15:52:53Z
33
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "tutorial" ]
[ "robotics" ]
2025-01-26T15:52:47Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.0", "robot_type": "so100", "total_episodes": 3, "total_frames": 1110, "total_tasks": 1, "total_videos": 6, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:3" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
Pi-robot/sim_arms_pick_jujubes
Pi-robot
2025-02-18T06:14:58Z
28
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "modality:image", "modality:timeseries", "region:us", "LeRobot" ]
[ "robotics" ]
2025-02-18T05:26:41Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.0", "robot_type": "mobile_aloha", "total_episodes": 132, "total_frames": 41635, "total_tasks": 1, "total_videos": 0, "total_chunks": 1, "chunks_size": 1000, "fps": 25, "splits": { "train": "0:132" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "observation.state": { "dtype": "float32", "shape": [ 14 ], "names": [ [ "right_waist", "right_shoulder", "right_elbow", "right_forearm_roll", "right_wrist_angle", "right_wrist_rotate", "right_gripper", "left_waist", "left_shoulder", "left_elbow", "left_forearm_roll", "left_wrist_angle", "left_wrist_rotate", "left_gripper" ] ] }, "action": { "dtype": "float32", "shape": [ 14 ], "names": [ [ "right_waist", "right_shoulder", "right_elbow", "right_forearm_roll", "right_wrist_angle", "right_wrist_rotate", "right_gripper", "left_waist", "left_shoulder", "left_elbow", "left_forearm_roll", "left_wrist_angle", "left_wrist_rotate", "left_gripper" ] ] }, "observation.images.cam_high": { "dtype": "image", "shape": [ 3, 480, 640 ], "names": [ "channels", "height", "width" ] }, "observation.images.cam_left_wrist": { "dtype": "image", "shape": [ 3, 480, 640 ], "names": [ "channels", "height", "width" ] }, "observation.images.cam_right_wrist": { "dtype": "image", "shape": [ 3, 480, 640 ], "names": [ "channels", "height", "width" ] }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
fjxdaisy/hh-rlhf-entropy-rule5-b0-84
fjxdaisy
2024-12-24T19:05:24Z
58
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-24T18:28:36Z
0
--- dataset_info: features: - name: data_id dtype: string - name: chosen_rule_5_yes_prob dtype: float64 - name: chosen_rule_5_no_prob dtype: float64 - name: rejected_rule_5_yes_prob dtype: float64 - name: rejected_rule_5_no_prob dtype: float64 - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 4153890 num_examples: 85000 download_size: 3457981 dataset_size: 4153890 configs: - config_name: default data_files: - split: train path: data/train-* ---
amuvarma/voice-actors-13-full-audio3k-24k-notnormalised-dedup-TTS-no-names
amuvarma
2025-03-23T08:26:08Z
20
0
[ "size_categories:1K<n<10K", "format:parquet", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-23T08:26:07Z
0
--- dataset_info: features: - name: input_ids sequence: int32 splits: - name: train num_bytes: 8723024.0 num_examples: 2984 download_size: 4783525 dataset_size: 8723024.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
arianhosseini/code_generation_lite_not_in_128
arianhosseini
2025-03-05T15:48:58Z
16
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-05T15:47:13Z
0
--- dataset_info: features: - name: question_title dtype: string - name: question_content dtype: string - name: platform dtype: string - name: question_id dtype: string - name: contest_id dtype: string - name: contest_date dtype: string - name: starter_code dtype: string - name: difficulty dtype: string - name: public_test_cases dtype: string - name: private_test_cases dtype: string - name: metadata dtype: string splits: - name: test num_bytes: 3723440236.605682 num_examples: 753 download_size: 3498156984 dataset_size: 3723440236.605682 configs: - config_name: default data_files: - split: test path: data/test-* ---
seossine/dataset_102
seossine
2025-02-13T06:11:14Z
19
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-13T06:11:08Z
0
--- dataset_info: features: - name: Question dtype: string - name: Complex_CoT dtype: string - name: Response dtype: string splits: - name: train num_bytes: 81466 num_examples: 132 download_size: 43964 dataset_size: 81466 configs: - config_name: default data_files: - split: train path: data/train-* ---
jkazdan/pku-safe-30k-test-Mistral-7B-v0.1-base
jkazdan
2024-12-05T21:11:23Z
14
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-05T20:28:35Z
0
--- dataset_info: features: - name: prompt dtype: string - name: response dtype: string splits: - name: train num_bytes: 4430968 num_examples: 2816 download_size: 1452869 dataset_size: 4430968 configs: - config_name: default data_files: - split: train path: data/train-* ---
zjkarina/nanoMINER_test
zjkarina
2025-05-19T07:35:25Z
0
0
[ "license:mit", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-18T19:41:26Z
0
--- license: mit dataset_info: features: - name: conversation list: - name: content dtype: string - name: role dtype: string - name: fname dtype: string splits: - name: cytox num_bytes: 879004 num_examples: 34 - name: synergy num_bytes: 397175 num_examples: 17 - name: seltox num_bytes: 941484 num_examples: 31 - name: magnetic num_bytes: 1084473 num_examples: 74 - name: nanozymes num_bytes: 1387688 num_examples: 79 download_size: 2428062 dataset_size: 4689824 configs: - config_name: default data_files: - split: cytox path: data/cytox-* - split: synergy path: data/synergy-* - split: seltox path: data/seltox-* - split: magnetic path: data/magnetic-* - split: nanozymes path: data/nanozymes-* ---
uzair921/LLAMA7B_GUM_LLM_RAG_25_MiniLM
uzair921
2025-02-11T11:23:50Z
26
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-11T11:18:39Z
0
--- dataset_info: features: - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': O '1': B-abstract '2': I-abstract '3': B-animal '4': I-animal '5': B-event '6': I-event '7': B-object '8': I-object '9': B-organization '10': I-organization '11': B-person '12': I-person '13': B-place '14': I-place '15': B-plant '16': I-plant '17': B-quantity '18': I-quantity '19': B-substance '20': I-substance '21': B-time '22': I-time splits: - name: train num_bytes: 277726 num_examples: 894 - name: validation num_bytes: 213725 num_examples: 615 - name: test num_bytes: 292655 num_examples: 807 download_size: 216715 dataset_size: 784106 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
Shwetasingh123/8_epoch
Shwetasingh123
2025-01-05T13:50:30Z
16
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-05T13:50:26Z
0
--- dataset_info: features: - name: problem dtype: string - name: answer dtype: string - name: unique_id dtype: string - name: generated_chain dtype: string - name: generated_answer dtype: string - name: is_correct dtype: bool - name: logprobs list: - name: decoded_token dtype: string - name: logprob dtype: float64 - name: rank dtype: int64 - name: token_id dtype: int64 - name: epoch dtype: int64 - name: temperature dtype: float64 splits: - name: train num_bytes: 29162345 num_examples: 662 download_size: 11957104 dataset_size: 29162345 configs: - config_name: default data_files: - split: train path: data/train-* ---
kaiwenw/dec9_sp1_repeat_5_pref_jdpo_all_reject_first
kaiwenw
2024-12-10T00:55:08Z
15
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-10T00:55:04Z
0
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string - name: chosen_pref dtype: string - name: rejected_pref dtype: string - name: split_suffix dtype: string splits: - name: train num_bytes: 216640896.0 num_examples: 24458 - name: validation num_bytes: 19388435 num_examples: 2280 download_size: 56501867 dataset_size: 236029331.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
tarsur909/imdb_sft-test_lm-gpt2-large-imdb-PPO-BON-25_42_250_504_1
tarsur909
2025-05-15T01:44:09Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-15T01:44:07Z
0
--- dataset_info: features: - name: model_response dtype: string - name: text dtype: string - name: label dtype: int64 - name: query dtype: string - name: gen_review dtype: string - name: query_input_ids sequence: int64 - name: query_attention_mask sequence: int64 - name: reference_response dtype: string - name: reference_response_input_ids sequence: int64 - name: reference_response_attention_mask sequence: int64 - name: reference_response_token_len dtype: int64 - name: query_reference_response dtype: string - name: query_reference_response_input_ids sequence: int64 - name: query_reference_response_attention_mask sequence: int64 - name: query_reference_response_token_response_label sequence: int64 - name: query_reference_response_token_len dtype: int64 - name: prompt dtype: string splits: - name: test num_bytes: 9098495.0 num_examples: 250 download_size: 1460742 dataset_size: 9098495.0 configs: - config_name: default data_files: - split: test path: data/test-* ---
Nechintosh/ghibli
Nechintosh
2025-01-04T06:16:11Z
362
4
[ "license:other", "size_categories:n<1K", "format:imagefolder", "modality:image", "modality:text", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2025-01-04T05:11:52Z
0
--- license: other license_name: studio-ghibli-nc-license license_link: LICENSE --- ## Dataset Card for Studio Ghibli Characters This dataset contains 810 images, collected from the free-to-use gallery of https://ghibli.jp, with custom captions written with BLIP2. ## Disclaimer The images within this dataset have been downloaded from https://www.ghibli.jp/gallery, and as the website states, those images can be used for free, but within the bounds of common sense and without commercial purposes. Note that this dataset is only for open experimentation and research purposes, and the materials are not planned to be used in any way or form that is malicious or agains the principes defined in the LICENSE. More details in the custom license created within this repository, which is based on the specifications for those images within their website.
serpentilec137/gita-verse-qna-dataset
serpentilec137
2025-05-21T09:56:38Z
33
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-20T14:56:08Z
0
--- dataset_info: features: - name: question dtype: string - name: answer dtype: string - name: source_chapter dtype: string - name: source_verse dtype: string splits: - name: train num_bytes: 642902.5296442688 num_examples: 1138 - name: test num_bytes: 71747.47035573123 num_examples: 127 download_size: 429550 dataset_size: 714650.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
Bruno2023/my-distiset-3d6680f8
Bruno2023
2025-01-29T01:55:32Z
12
0
[ "task_categories:text-generation", "task_categories:text2text-generation", "task_categories:text-retrieval", "task_categories:question-answering", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "library:distilabel", "region:us", "synthetic", "distilabel", "rlaif", "datacraft" ]
[ "text-generation", "text2text-generation", "text-retrieval", "question-answering" ]
2025-01-29T01:55:30Z
0
--- size_categories: n<1K task_categories: - text-generation - text2text-generation - text-retrieval - question-answering dataset_info: features: - name: context dtype: string - name: question dtype: string - name: response dtype: string splits: - name: train num_bytes: 10904 num_examples: 10 download_size: 13754 dataset_size: 10904 configs: - config_name: default data_files: - split: train path: data/train-* tags: - synthetic - distilabel - rlaif - datacraft --- <p align="left"> <a href="https://github.com/argilla-io/distilabel"> <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/> </a> </p> # Dataset Card for my-distiset-3d6680f8 This dataset has been created with [distilabel](https://distilabel.argilla.io/). ## Dataset Summary This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI: ```console distilabel pipeline run --config "https://huggingface.co/datasets/Bruno2023/my-distiset-3d6680f8/raw/main/pipeline.yaml" ``` or explore the configuration: ```console distilabel pipeline info --config "https://huggingface.co/datasets/Bruno2023/my-distiset-3d6680f8/raw/main/pipeline.yaml" ``` ## Dataset structure The examples have the following structure per configuration: <details><summary> Configuration: default </summary><hr> ```json { "context": "MARC-AUR\u00c8LE LIVRE \u00cf E \u2014 De: mon grand-p\u00e8re V\u00e9rus? : la bont\u00e9 coutu- mi\u00e8re, le calme inalt\u00e9rable, II. \u2014\u2014 De la r\u00e9putation et du souvenir que laissa mon p\u00e8re : la r\u00e9serve et la force virile. IL. \u2014 De ma m\u00e8re # : la pi\u00e9t\u00e9, la lib\u00e9ralit\u00e9, l\u2019habi- tude de s\u0027abstenir non seulement de mal faire, mais de s\u0027arr\u00eater encore sur une pens\u00e9e mauvaise. De plus : la simplicit\u00e9 du r\u00e9gime de vie, et l\u2019aversion pour le train d\u0027existence que m\u00e8nent les riches. IV. \u2014 De mon bisaleulf : n\u2019avoir point fr\u00e9quent\u00e9 les", "question": "Quels sont les traits de caract\u00e8re de votre grand-p\u00e8re V\u00e9rus, de votre p\u00e8re, de votre m\u00e8re et de votre oncle qui vous ont influenc\u00e9?", "response": "D\u0027apr\u00e8s le document, les traits de caract\u00e8re des personnages mentionn\u00e9s sont les suivants :\n\n- De votre grand-p\u00e8re V\u00e9rus : \n - La bont\u00e9\n - La bont\u00e9 extr\u00eame (coutumi\u00e8re)\n - Le calme inalt\u00e9rable\n\n- De votre p\u00e8re :\n - La r\u00e9serve\n - La force virile\n\n- De votre m\u00e8re :\n - La pi\u00e9t\u00e9\n - La lib\u00e9ralit\u00e9\n - La simplicit\u00e9 du r\u00e9gime de vie\n - L\u0027aversion pour le train d\u0027existence des riches\n - L\u0027habitude de s\u0027abstenir non seulement de mal faire, mais de s\u0027arr\u00eater sur une pens\u00e9e mauvaise\n\n- De votre oncle (bisaleulf) :\n - Ne fr\u00e9quentant pas les... (le document ne mentionne pas les qualit\u00e9s ou les d\u00e9fauts de votre oncle, mais plut\u00f4t ce qu\u0027il n\u0027a pas fait)" } ``` This subset can be loaded as: ```python from datasets import load_dataset ds = load_dataset("Bruno2023/my-distiset-3d6680f8", "default") ``` Or simply as it follows, since there's only one configuration and is named `default`: ```python from datasets import load_dataset ds = load_dataset("Bruno2023/my-distiset-3d6680f8") ``` </details>
AlanYky/filtered_tweets_instruct
AlanYky
2024-10-27T19:41:52Z
22
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-27T19:41:11Z
0
--- dataset_info: features: - name: instruction dtype: string - name: text dtype: string splits: - name: train num_bytes: 3867178 num_examples: 22172 download_size: 2590334 dataset_size: 3867178 configs: - config_name: default data_files: - split: train path: data/train-* ---
chiyuanhsiao/text_L2-regular-ASR_spoken-web-questions
chiyuanhsiao
2025-04-28T16:00:47Z
20
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-28T15:55:44Z
0
--- dataset_info: features: - name: url dtype: string - name: question dtype: string - name: answers sequence: string - name: my_prediction_text dtype: string splits: - name: test num_bytes: 1142492 num_examples: 2032 download_size: 304095 dataset_size: 1142492 configs: - config_name: default data_files: - split: test path: data/test-* ---
burman-ai/german-to-burmese-translations
burman-ai
2025-04-14T10:06:14Z
18
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-14T10:06:10Z
0
--- dataset_info: features: - name: translation dtype: translation: languages: - de - en - name: german dtype: string - name: burmese dtype: string splits: - name: train num_bytes: 80872 num_examples: 100 download_size: 43381 dataset_size: 80872 configs: - config_name: default data_files: - split: train path: data/train-* ---
fineinstructions/real_queries
fineinstructions
2025-01-22T12:06:55Z
84
1
[ "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-22T12:02:03Z
0
--- dataset_info: features: - name: language dtype: string - name: query dtype: string - name: source dtype: string - name: metadata dtype: string - name: source_name dtype: string splits: - name: full num_bytes: 17772016095 num_examples: 21454204 download_size: 8985686381 dataset_size: 17772016095 configs: - config_name: default data_files: - split: full path: data/full-* ---
justinandrews56/my-distiset-ee6eb438
justinandrews56
2025-04-03T16:49:58Z
9
0
[ "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-03T16:49:57Z
0
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': middle_name '1': phone5 '2': phone1 '3': email3 '4': email5 '5': email4 '6': phone3 '7': first_name '8': last_name '9': email2 '10': phone2 '11': phone4 '12': email1 splits: - name: train num_bytes: 0 num_examples: 0 download_size: 1064 dataset_size: 0 configs: - config_name: default data_files: - split: train path: data/train-* ---
hrasto/babylm24
hrasto
2025-01-08T17:20:34Z
20
0
[ "task_categories:text-generation", "language:en", "license:mit", "size_categories:10M<n<100M", "region:us" ]
[ "text-generation" ]
2025-01-07T10:27:26Z
0
--- license: mit task_categories: - text-generation language: - en size_categories: - 10M<n<100M ---
Lots-of-LoRAs/task851_synthetic_multiply_evens
Lots-of-LoRAs
2025-01-03T18:46:12Z
24
0
[ "task_categories:text-generation", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "language:en", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2204.07705", "arxiv:2407.00066", "region:us" ]
[ "text-generation" ]
2025-01-03T18:46:10Z
0
--- annotations_creators: - crowdsourced language_creators: - crowdsourced language: - en license: - apache-2.0 task_categories: - text-generation pretty_name: task851_synthetic_multiply_evens dataset_info: config_name: plain_text features: - name: input dtype: string - name: output dtype: string - name: id dtype: string splits: - name: train num_examples: 5200 - name: valid num_examples: 650 - name: test num_examples: 650 --- # Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task851_synthetic_multiply_evens ## Dataset Description - **Homepage:** https://github.com/allenai/natural-instructions - **Paper:** https://arxiv.org/abs/2204.07705 - **Paper:** https://arxiv.org/abs/2407.00066 - **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected]) ## Additional Information ### Citation Information The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it: ```bibtex @misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions, title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks}, author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi}, year={2022}, eprint={2204.07705}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2204.07705}, } ``` More details can also be found in the following paper: ```bibtex @misc{brüelgabrielsson2024compressserveservingthousands, title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead}, author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon}, year={2024}, eprint={2407.00066}, archivePrefix={arXiv}, primaryClass={cs.DC}, url={https://arxiv.org/abs/2407.00066}, } ``` ### Contact Information For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
jnlpba/jnlpba
jnlpba
2024-01-18T11:07:08Z
231
9
[ "task_categories:token-classification", "task_ids:named-entity-recognition", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "source_datasets:extended|other-genia-v3.02", "language:en", "license:unknown", "size_categories:10K<n<100K", "region:us" ]
[ "token-classification" ]
2022-03-02T23:29:22Z
0
--- annotations_creators: - expert-generated language_creators: - expert-generated language: - en license: - unknown multilinguality: - monolingual size_categories: - 10K<n<100K source_datasets: - extended|other-genia-v3.02 task_categories: - token-classification task_ids: - named-entity-recognition pretty_name: BioNLP / JNLPBA Shared Task 2004 dataset_info: features: - name: id dtype: string - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': O '1': B-DNA '2': I-DNA '3': B-RNA '4': I-RNA '5': B-cell_line '6': I-cell_line '7': B-cell_type '8': I-cell_type '9': B-protein '10': I-protein config_name: jnlpba splits: - name: train num_bytes: 8775707 num_examples: 18546 - name: validation num_bytes: 1801565 num_examples: 3856 download_size: 3171072 dataset_size: 10577272 --- # Dataset Card for JNLPBA ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** http://www.geniaproject.org/shared-tasks/bionlp-jnlpba-shared-task-2004 - **Repository:** [Needs More Information] - **Paper:** https://www.aclweb.org/anthology/W04-1213.pdf - **Leaderboard:** https://paperswithcode.com/sota/named-entity-recognition-ner-on-jnlpba?p=biobert-a-pre-trained-biomedical-language - **Point of Contact:** [Needs More Information] ### Dataset Summary The data came from the GENIA version 3.02 corpus (Kim et al., 2003). This was formed from a controlled search on MEDLINE using the MeSH terms human, blood cells and transcription factors. From this search 2,000 abstracts were selected and hand annotated according to a small taxonomy of 48 classes based on a chemical classification. Among the classes, 36 terminal classes were used to annotate the GENIA corpus. ### Supported Tasks and Leaderboards NER ### Languages English ## Dataset Structure ### Data Instances { 'id': '1', 'tokens': ['IL-2', 'gene', 'expression', 'and', 'NF-kappa', 'B', 'activation', 'through', 'CD28', 'requires', 'reactive', 'oxygen', 'production', 'by', '5-lipoxygenase', '.'], 'ner_tags': [1, 2, 0, 0, 9, 10, 0, 0, 9, 0, 0, 0, 0, 0, 9, 0], } ### Data Fields - `id`: Sentence identifier. - `tokens`: Array of tokens composing a sentence. - `ner_tags`: Array of tags, where `0` indicates no bio-entity mentioned, `1` signals the first token of a bio-entity and `2` the subsequent bio-entity tokens. ### Data Splits Train samples: 37094 Validation samples: 7714 ## Dataset Creation ### Curation Rationale [Needs More Information] ### Source Data #### Initial Data Collection and Normalization [Needs More Information] #### Who are the source language producers? [Needs More Information] ### Annotations #### Annotation process [Needs More Information] #### Who are the annotators? [Needs More Information] ### Personal and Sensitive Information [Needs More Information] ## Considerations for Using the Data ### Social Impact of Dataset [Needs More Information] ### Discussion of Biases [Needs More Information] ### Other Known Limitations [Needs More Information] ## Additional Information ### Dataset Curators [Needs More Information] ### Licensing Information [Needs More Information] ### Citation Information @inproceedings{collier-kim-2004-introduction, title = "Introduction to the Bio-entity Recognition Task at {JNLPBA}", author = "Collier, Nigel and Kim, Jin-Dong", booktitle = "Proceedings of the International Joint Workshop on Natural Language Processing in Biomedicine and its Applications ({NLPBA}/{B}io{NLP})", month = aug # " 28th and 29th", year = "2004", address = "Geneva, Switzerland", publisher = "COLING", url = "https://aclanthology.org/W04-1213", pages = "73--78", } ### Contributions Thanks to [@edugp](https://github.com/edugp) for adding this dataset.
FlippyDora/math500_Qwen2-7B-Instruct_n8
FlippyDora
2025-02-09T18:21:00Z
61
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-09T18:20:59Z
0
--- dataset_info: features: - name: question dtype: string - name: answer dtype: string - name: outputs list: - name: label dtype: int64 - name: output dtype: string - name: result dtype: string splits: - name: train num_bytes: 6336574 num_examples: 500 download_size: 1928927 dataset_size: 6336574 configs: - config_name: default data_files: - split: train path: data/train-* ---
supergoose/flan_combined_task758_msr_sqa_question_answer_generation
supergoose
2025-03-03T00:49:39Z
17
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-03T00:49:37Z
0
--- dataset_info: features: - name: inputs dtype: string - name: targets dtype: string - name: _template_idx dtype: int64 - name: _task_source dtype: string - name: _task_name dtype: string - name: _template_type dtype: string splits: - name: train num_bytes: 4198756 num_examples: 1198 download_size: 1675035 dataset_size: 4198756 configs: - config_name: default data_files: - split: train path: data/train-* ---
MoonKih/final2
MoonKih
2024-11-26T10:18:55Z
14
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-26T10:18:53Z
0
--- dataset_info: features: - name: image dtype: string - name: text dtype: string splits: - name: train num_bytes: 1346616 num_examples: 1190 download_size: 172567 dataset_size: 1346616 configs: - config_name: default data_files: - split: train path: data/train-* ---
csbhlim222/partial-UI-generation-viewports
csbhlim222
2025-05-14T12:14:14Z
0
0
[ "license:cc-by-sa-3.0", "region:us" ]
[]
2025-05-14T12:12:02Z
0
--- license: cc-by-sa-3.0 --- This viewports data is retrieved and modified upon https://gs.statcounter.com/screen-resolution-stats, for the use of the project Beyond code: A Comprehensive Study on Website Builders, Their Limitations, and Opportunities for Innovation.
panneerselvam1010/af-guidelines-v3
panneerselvam1010
2025-04-16T09:32:39Z
13
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-16T09:32:20Z
0
--- dataset_info: features: - name: instruction dtype: string - name: context dtype: string - name: response dtype: string splits: - name: train num_bytes: 1700930 num_examples: 2785 - name: test num_bytes: 1117239 num_examples: 1853 download_size: 692427 dataset_size: 2818169 --- # Dataset Card for "af-guidelines-v3" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
MMM-J/real-vs-fake-cats
MMM-J
2024-12-04T19:52:19Z
65
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-04T14:17:08Z
0
--- dataset_info: features: - name: image dtype: image - name: label dtype: class_label: names: '0': fake '1': real splits: - name: train num_bytes: 19338218.0 num_examples: 900 - name: test num_bytes: 1615036.0 num_examples: 86 download_size: 20932426 dataset_size: 20953254.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
Lithium73fr/TEST7
Lithium73fr
2025-06-08T19:53:22Z
434
0
[ "task_categories:robotics", "size_categories:n<1K", "modality:video", "library:datasets", "library:mlcroissant", "region:us", "phosphobot", "so100", "phospho-dk" ]
[ "robotics" ]
2025-06-03T08:02:03Z
0
--- tags: - phosphobot - so100 - phospho-dk task_categories: - robotics --- # TEST7 **This dataset was generated using a [phospho starter pack](https://robots.phospho.ai).** This dataset contains a series of episodes recorded with a robot and multiple cameras. It can be directly used to train a policy using imitation learning. It's compatible with LeRobot and RLDS.
jimc86/alpaca-lama-3.1-8B-Instruct
jimc86
2025-03-04T08:48:33Z
17
1
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "library:distilabel", "region:us", "synthetic", "distilabel", "rlaif" ]
[]
2025-03-04T08:48:15Z
0
--- size_categories: n<1K dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string - name: generation dtype: string - name: distilabel_metadata struct: - name: raw_input_text_generation_0 list: - name: content dtype: string - name: role dtype: string - name: raw_output_text_generation_0 dtype: string - name: statistics_text_generation_0 struct: - name: input_tokens dtype: int64 - name: output_tokens dtype: int64 - name: model_name dtype: string splits: - name: train num_bytes: 247062697 num_examples: 51760 download_size: 128083857 dataset_size: 247062697 configs: - config_name: default data_files: - split: train path: data/train-* tags: - synthetic - distilabel - rlaif --- <p align="left"> <a href="https://github.com/argilla-io/distilabel"> <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/> </a> </p> # Dataset Card for alpaca-lama-3.1-8B-Instruct This dataset has been created with [distilabel](https://distilabel.argilla.io/). ## Dataset Summary This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI: ```console distilabel pipeline run --config "https://huggingface.co/datasets/jimc86/alpaca-lama-3.1-8B-Instruct/raw/main/pipeline.yaml" ``` or explore the configuration: ```console distilabel pipeline info --config "https://huggingface.co/datasets/jimc86/alpaca-lama-3.1-8B-Instruct/raw/main/pipeline.yaml" ``` ## Dataset structure The examples have the following structure per configuration: <details><summary> Configuration: default </summary><hr> ```json { "distilabel_metadata": { "raw_input_text_generation_0": [ { "content": "You will be given a problem. Please reason step by step:\n### Instruction:\nGive three tips for staying healthy.\n\n### Input:\n\n\n### Response:", "role": "user" } ], "raw_output_text_generation_0": "Here are three tips for staying healthy:\n\n1. **Stay Hydrated**: Drinking plenty of water is essential for maintaining overall health. Dehydration can lead to fatigue, headaches, and decreased productivity. Aim to drink at least eight glasses of water per day, and consider increasing your intake if you\u0027re physically active or live in a hot climate.\n\n2. **Eat a Balanced Diet**: A healthy diet provides your body with the nutrients it needs to function properly. Focus on consuming a variety of whole, unprocessed foods such as fruits, vegetables, whole grains, lean proteins, and healthy fats. Aim to limit your intake of sugary drinks, fast food, and processed snacks.\n\n3. **Exercise Regularly**: Regular physical activity can help maintain a healthy weight, improve cardiovascular health, and boost mood. Aim for at least 150 minutes of moderate-intensity exercise per week, or 75 minutes of vigorous-intensity exercise per week. You can also incorporate strength training and flexibility exercises to improve overall fitness and reduce the risk of injury.", "statistics_text_generation_0": { "input_tokens": 65, "output_tokens": 209 } }, "generation": "Here are three tips for staying healthy:\n\n1. **Stay Hydrated**: Drinking plenty of water is essential for maintaining overall health. Dehydration can lead to fatigue, headaches, and decreased productivity. Aim to drink at least eight glasses of water per day, and consider increasing your intake if you\u0027re physically active or live in a hot climate.\n\n2. **Eat a Balanced Diet**: A healthy diet provides your body with the nutrients it needs to function properly. Focus on consuming a variety of whole, unprocessed foods such as fruits, vegetables, whole grains, lean proteins, and healthy fats. Aim to limit your intake of sugary drinks, fast food, and processed snacks.\n\n3. **Exercise Regularly**: Regular physical activity can help maintain a healthy weight, improve cardiovascular health, and boost mood. Aim for at least 150 minutes of moderate-intensity exercise per week, or 75 minutes of vigorous-intensity exercise per week. You can also incorporate strength training and flexibility exercises to improve overall fitness and reduce the risk of injury.", "input": "", "instruction": "Give three tips for staying healthy.", "model_name": "meta-llama/Llama-3.1-8B-Instruct", "output": "1. Eat a balanced and nutritious diet: Make sure your meals are inclusive of a variety of fruits and vegetables, lean protein, whole grains, and healthy fats. This helps to provide your body with the essential nutrients to function at its best and can help prevent chronic diseases.\n\n2. Engage in regular physical activity: Exercise is crucial for maintaining strong bones, muscles, and cardiovascular health. Aim for at least 150 minutes of moderate aerobic exercise or 75 minutes of vigorous exercise each week.\n\n3. Get enough sleep: Getting enough quality sleep is crucial for physical and mental well-being. It helps to regulate mood, improve cognitive function, and supports healthy growth and immune function. Aim for 7-9 hours of sleep each night." } ``` This subset can be loaded as: ```python from datasets import load_dataset ds = load_dataset("jimc86/alpaca-lama-3.1-8B-Instruct", "default") ``` Or simply as it follows, since there's only one configuration and is named `default`: ```python from datasets import load_dataset ds = load_dataset("jimc86/alpaca-lama-3.1-8B-Instruct") ``` </details>
math-extraction-comp/Open-Orca__Mistral-7B-OpenOrca
math-extraction-comp
2025-01-25T23:06:43Z
9
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-08T17:45:07Z
0
--- dataset_info: features: - name: question dtype: string - name: gold dtype: string - name: target dtype: string - name: prediction dtype: string - name: subset dtype: string - name: lighteval-4cfbbf17_extracted_answer dtype: string - name: lighteval-4cfbbf17_score dtype: float64 - name: lighteval-6e869ab5_extracted_answer dtype: string - name: lighteval-c24870ea_score dtype: float64 - name: qwen_extracted_answer dtype: string - name: lighteval-0f21c935_extracted_answer dtype: string - name: lighteval-6e869ab5_score dtype: float64 - name: harness_score dtype: float64 - name: qwen_score dtype: float64 - name: lighteval-c24870ea_extracted_answer dtype: string - name: lighteval-0f21c935_score dtype: float64 - name: harness_extracted_answer dtype: string splits: - name: train num_bytes: 2889648 num_examples: 1324 download_size: 1265333 dataset_size: 2889648 configs: - config_name: default data_files: - split: train path: data/train-* ---
akatsuki1125/JMultiPL-E-rb
akatsuki1125
2025-02-25T23:49:29Z
14
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-25T23:31:44Z
0
--- dataset_info: features: - name: prompt dtype: string - name: language dtype: string - name: original dtype: string - name: prompt_terminology dtype: string - name: name dtype: string - name: stop_tokens sequence: string - name: doctests dtype: string - name: tests dtype: string splits: - name: test num_bytes: 199640 num_examples: 161 download_size: 76155 dataset_size: 199640 --- # Dataset Card for "JMultiPL-E-rb" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
gtsaidata/Dahlias_Flower_Variety_Dataset
gtsaidata
2025-06-18T07:36:33Z
0
0
[ "task_categories:image-classification", "language:en", "region:us", "Dahlias Flower Variety Dataset", "botanical research", "horticulture projects" ]
[ "image-classification" ]
2025-06-18T07:20:15Z
0
--- task_categories: - image-classification language: - en tags: - Dahlias Flower Variety Dataset - botanical research - horticulture projects --- Description: <a href="https://gts.ai/dataset-download/dahlias-flower-variety-dataset/" target="_blank">👉 Download the dataset here</a> The Dahlias Flower Variety Dataset​ is an extensive compilation of high-resolution images and detailed metadata for a diverse range of dahlia flower varieties. Known for their vibrant colors and varied forms, dahlias are a popular subject among gardeners and photographers alike. Download Dataset Dataset Contents: Images: This dataset includes a wide array of images featuring various dahlia flower varieties. The photos are taken under different lighting conditions, settings, and angles, providing a rich resource for researchers, florists, and hobbyists. Metadata: Each image comes with comprehensive metadata, including the flower variety name, color, bloom size, and other pertinent details. This metadata is invaluable for research, classification, and identification purposes. Use Cases: Botanical Research: Researchers and botanists can utilize this dataset to study and classify dahlia flower varieties, enhancing our knowledge of the species. Horticulture: Gardening enthusiasts and professionals can reference this dataset to identify different varieties, plan landscaping projects, and design vibrant flower arrangements. Computer Vision and Machine Learning: This dataset is ideal for data scientists and machine learning practitioners to train and test models for flower recognition, classification, and segmentation. This dataset is sourced from Kaggle.
ziyu3141/rf_newtrain_1_58
ziyu3141
2025-02-07T04:02:44Z
15
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-07T04:02:42Z
0
--- dataset_info: features: - name: Filename dtype: string - name: Aesthetics score dtype: float64 - name: Artifact score dtype: float64 - name: Misalignment score dtype: float64 - name: Overall score dtype: float64 - name: Artifact heatmap sequence: sequence: sequence: int64 - name: Misalignment heatmap sequence: sequence: sequence: int64 - name: Misalignment token label dtype: string - name: is_uneven dtype: bool - name: preferred_image dtype: binary - name: unpreferred_image dtype: binary - name: revised_image dtype: binary - name: unrevised_id dtype: string - name: is_preferred dtype: bool splits: - name: train num_bytes: 134637432 num_examples: 20 download_size: 9118997 dataset_size: 134637432 configs: - config_name: default data_files: - split: train path: data/train-* ---
uzair921/QWEN_GUM_LLM_CONTEXT_25
uzair921
2025-02-10T20:29:04Z
10
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-10T20:28:56Z
0
--- dataset_info: features: - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': O '1': B-abstract '2': I-abstract '3': B-animal '4': I-animal '5': B-event '6': I-event '7': B-object '8': I-object '9': B-organization '10': I-organization '11': B-person '12': I-person '13': B-place '14': I-place '15': B-plant '16': I-plant '17': B-quantity '18': I-quantity '19': B-substance '20': I-substance '21': B-time '22': I-time splits: - name: train num_bytes: 346014 num_examples: 1002 - name: validation num_bytes: 213725 num_examples: 615 - name: test num_bytes: 292655 num_examples: 807 download_size: 229218 dataset_size: 852394 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
1231czx/ver2_rebuttal_eaf_rm_bon8_05
1231czx
2024-11-21T15:39:45Z
16
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-21T15:39:44Z
0
--- dataset_info: features: - name: instruction dtype: string - name: output dtype: string - name: generator dtype: string splits: - name: train num_bytes: 1345628 num_examples: 805 download_size: 811028 dataset_size: 1345628 configs: - config_name: default data_files: - split: train path: data/train-* ---
alibaba-pai/DistilQwen_1M
alibaba-pai
2025-05-24T09:42:34Z
36
0
[ "license:apache-2.0", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2504.15027", "region:us" ]
[]
2025-05-22T03:29:45Z
0
--- license: apache-2.0 dataset_info: features: - name: instruct dtype: string - name: output dtype: string splits: - name: train num_bytes: 5352504933 num_examples: 2311632 download_size: 2773269443 dataset_size: 5352504933 configs: - config_name: default data_files: - split: train path: data/train-* --- # DistilQwen-1M: High-Quality Instruction-Tuning Dataset ## Overview To empower community developers in enhancing the **instruction-following capabilities** of large language models (LLMs), we open-source **`DistilQwen-1M`**, a distilled subset of the training data used for the **DistilQwen model series**. Alongside its smaller counterpart (`DistilQwen-100K`), this dataset provides diverse, high-quality samples to improve model performance in key areas. ## Dataset Features - **Scale**: **1 million** meticulously distilled entries. - **Coverage**: Balanced mix of: - **Mathematics** - **Code generation & understanding** - **Knowledge-based QA** - **Instruction following** - **Creative generation** - **Purpose**: Optimized for **instruction tuning**, helping models retain generalization while adapting to downstream tasks. ## Use Cases - **Fine-tuning LLMs**: Mitigate *catastrophic forgetting* by combining with custom datasets. - **Multi-task learning**: Improve coherence in mathematical reasoning, coding, and creative tasks. - **Research**: Study distillation techniques or instruction-tuning efficacy. ## Reference For more detailed information about the dataset construction process, we encourage you to refer to our paper: - **DistilQwen2.5: Industrial Practices of Training Distilled Open Lightweight Language Models** Chengyu Wang, Junbing Yan, Yuanhao Yue, Jun Huang [arXiv:2504.15027](https://arxiv.org/abs/2504.15027) You can cite the paper using the following citation format: ```bibtex @misc{wang2025distilqwen25industrialpracticestraining, title={DistilQwen2.5: Industrial Practices of Training Distilled Open Lightweight Language Models}, author={Chengyu Wang and Junbing Yan and Yuanhao Yue and Jun Huang}, year={2025}, eprint={2504.15027}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2504.15027} } ```
allday-technology/pickup-yellowball-canister
allday-technology
2025-05-23T22:42:52Z
212
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-05-21T00:16:05Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "trossen_subversion": "v1.0", "robot_type": "trossen_ai_stationary", "total_episodes": 1, "total_frames": 299, "total_tasks": 1, "total_videos": 4, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:1" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 14 ], "names": [ "left_joint_0", "left_joint_1", "left_joint_2", "left_joint_3", "left_joint_4", "left_joint_5", "left_joint_6", "right_joint_0", "right_joint_1", "right_joint_2", "right_joint_3", "right_joint_4", "right_joint_5", "right_joint_6" ] }, "observation.state": { "dtype": "float32", "shape": [ 14 ], "names": [ "left_joint_0", "left_joint_1", "left_joint_2", "left_joint_3", "left_joint_4", "left_joint_5", "left_joint_6", "right_joint_0", "right_joint_1", "right_joint_2", "right_joint_3", "right_joint_4", "right_joint_5", "right_joint_6" ] }, "observation.images.cam_high": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.cam_low": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.cam_left_wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.cam_right_wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
cobordism/mixed_pa-le-an-15k
cobordism
2024-11-05T13:25:15Z
22
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-05T13:24:55Z
0
--- dataset_info: features: - name: image dtype: image - name: conversations sequence: - name: from dtype: string - name: value dtype: string splits: - name: train num_bytes: 608771492.0 num_examples: 15000 download_size: 590275560 dataset_size: 608771492.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
ZixuanKe/cfa_extracted_exercise_sup_sample_from_policy_dpo_binarized
ZixuanKe
2024-11-11T05:22:14Z
65
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-11T02:45:56Z
0
--- dataset_info: features: - name: prompt dtype: string - name: rejected dtype: string - name: chosen dtype: string splits: - name: train num_bytes: 6225.333333333333 num_examples: 4 - name: validation num_bytes: 20573.0 num_examples: 11 download_size: 32211 dataset_size: 26798.333333333332 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
AadyaM/GPT_4o_mini_Fine_tune
AadyaM
2025-01-17T07:04:36Z
14
0
[ "license:apache-2.0", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "region:us" ]
[]
2025-01-17T07:04:09Z
0
--- license: apache-2.0 ---
uzair921/QWEN32B_R1_CONLL2003_LLM_CONTEXT_75
uzair921
2025-05-02T15:43:28Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-02T15:43:24Z
0
--- dataset_info: features: - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': O '1': B-PER '2': I-PER '3': B-ORG '4': I-ORG '5': B-LOC '6': I-LOC '7': B-MISC '8': I-MISC splits: - name: train num_bytes: 2361383 num_examples: 9568 - name: validation num_bytes: 866541 num_examples: 3250 - name: test num_bytes: 784956 num_examples: 3453 download_size: 1007434 dataset_size: 4012880 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_a8387e6c-26d7-448c-9c25-df50b26ef0be
argilla-internal-testing
2024-11-29T12:43:12Z
15
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-29T12:43:11Z
0
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
SecureFinAI-Lab/Regulations_NER
SecureFinAI-Lab
2025-06-24T22:43:29Z
36
0
[ "license:cdla-permissive-2.0", "size_categories:n<1K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-20T22:23:09Z
0
--- license: cdla-permissive-2.0 --- # Overview This question set is created to evaluate LLMs' ability for named entity recognition (NER) in financial regulatory texts. It is developed for a task at [Regulations Challege @ COLING 2025](https://coling2025regulations.thefin.ai/home). The objective is to accurately identify and classify entities, including organizations, legislation, dates, monetary values, and statistics. Financial regulations often require supervising and reporting on specific entities, such as organizations, financial products, and transactions, and cite corresponding legal provisions. NER helps to recognize and extract such entities from large amounts of text, thereby improving the efficiency of compliance processes and ensuring more accurate reporting. We evaluate LLMs’ ability in NER about the European OTC derivative market, regulated under EMIR. # Statistics | Category | Count | Authority | |-----------------------------|------:|----------------| | EMIR | 49 | ESMA | # Metrics The F1 score is used. # License The question set is licensed under [CDLA-Permissive-2.0](https://cdla.dev/permissive-2-0/). It is a permissive open data license. It allows anyone to freely use, modify, and redistribute the dataset, including for commercial purposes, provided that the license text is included with any redistributed version. There are no restrictions on the use or licensing of any outputs, models, or results derived from the data. # Related tasks Regulations Challenge at COLING 2025: https://coling2025regulations.thefin.ai/home
SuryaKrishna02/therapy-instruct
SuryaKrishna02
2024-12-17T23:11:17Z
68
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-17T23:11:14Z
0
--- dataset_info: features: - name: id dtype: int64 - name: conversations list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 2466092 num_examples: 1329 - name: test num_bytes: 283034 num_examples: 173 download_size: 495432 dataset_size: 2749126 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
DKYoon/qwq-nonambigqa-slope
DKYoon
2025-04-24T12:52:09Z
10
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-24T12:52:06Z
0
--- dataset_info: features: - name: question dtype: string - name: answers dtype: string - name: index dtype: string - name: prompt dtype: string - name: prompt_length dtype: int64 - name: prompt_pct dtype: int64 splits: - name: validation num_bytes: 21282384 num_examples: 11000 download_size: 3193036 dataset_size: 21282384 configs: - config_name: default data_files: - split: validation path: data/validation-* ---
tom-010/enwiki-answerability-2411-v2
tom-010
2024-11-09T08:30:03Z
17
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-09T08:30:00Z
0
--- dataset_info: features: - name: article dtype: string - name: article_sha1 dtype: string - name: section_idx dtype: int32 - name: section_title dtype: string - name: content dtype: string - name: questions struct: - name: questions sequence: string - name: adversarial sequence: string splits: - name: train num_bytes: 81779688 num_examples: 25745 download_size: 36484067 dataset_size: 81779688 configs: - config_name: default data_files: - split: train path: data/train-* ---
rhinopithecus/so101_pickandplace_whitecube_redbox_20250619_1009
rhinopithecus
2025-06-19T08:47:34Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-06-19T08:41:54Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so101_follower", "total_episodes": 29, "total_frames": 19850, "total_tasks": 1, "total_videos": 29, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:29" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "shoulder_pan.pos", "shoulder_lift.pos", "elbow_flex.pos", "wrist_flex.pos", "wrist_roll.pos", "gripper.pos" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "shoulder_pan.pos", "shoulder_lift.pos", "elbow_flex.pos", "wrist_flex.pos", "wrist_roll.pos", "gripper.pos" ] }, "observation.images.front": { "dtype": "video", "shape": [ 1080, 1920, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 1080, "video.width": 1920, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
jchandru08/so100_press_red_button
jchandru08
2025-04-13T00:50:31Z
71
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "tutorial" ]
[ "robotics" ]
2025-04-13T00:05:19Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 16, "total_frames": 9458, "total_tasks": 1, "total_videos": 64, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:16" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 12 ], "names": [ "left_shoulder_pan", "left_shoulder_lift", "left_elbow_flex", "left_wrist_flex", "left_wrist_roll", "left_gripper", "right_shoulder_pan", "right_shoulder_lift", "right_elbow_flex", "right_wrist_flex", "right_wrist_roll", "right_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 12 ], "names": [ "left_shoulder_pan", "left_shoulder_lift", "left_elbow_flex", "left_wrist_flex", "left_wrist_roll", "left_gripper", "right_shoulder_pan", "right_shoulder_lift", "right_elbow_flex", "right_wrist_flex", "right_wrist_roll", "right_gripper" ] }, "observation.images.back": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.top": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.left": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.right": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
CohenQu/CoRA-eval_AIME2025-hint5
CohenQu
2025-05-14T02:46:12Z
0
0
[ "region:us" ]
[]
2025-05-14T02:46:06Z
0
--- dataset_info: - config_name: Qwen3-1.7B_AIME2025-hint5_16384 features: - name: problem dtype: string - name: answer dtype: string - name: responses sequence: string - name: rewards sequence: int64 - name: mean_reward dtype: float64 splits: - name: test num_bytes: 11059377 num_examples: 30 download_size: 3890760 dataset_size: 11059377 - config_name: SolGen_baseline-easy-8k-med16k_Qwen3-1.7B_AIME2025-hint5_16384 features: - name: problem dtype: string - name: answer dtype: string - name: responses sequence: string - name: rewards sequence: int64 - name: mean_reward dtype: float64 splits: - name: test num_bytes: 10827865 num_examples: 30 download_size: 4345108 dataset_size: 10827865 - config_name: SolGen_easy-mix-zerorew_Qwen3-1.7B_v4_AIME2025-hint5_16384 features: - name: problem dtype: string - name: answer dtype: string - name: responses sequence: string - name: rewards sequence: int64 - name: mean_reward dtype: float64 splits: - name: test num_bytes: 10460023 num_examples: 30 download_size: 3921149 dataset_size: 10460023 configs: - config_name: Qwen3-1.7B_AIME2025-hint5_16384 data_files: - split: test path: Qwen3-1.7B_AIME2025-hint5_16384/test-* - config_name: SolGen_baseline-easy-8k-med16k_Qwen3-1.7B_AIME2025-hint5_16384 data_files: - split: test path: SolGen_baseline-easy-8k-med16k_Qwen3-1.7B_AIME2025-hint5_16384/test-* - config_name: SolGen_easy-mix-zerorew_Qwen3-1.7B_v4_AIME2025-hint5_16384 data_files: - split: test path: SolGen_easy-mix-zerorew_Qwen3-1.7B_v4_AIME2025-hint5_16384/test-* ---
JunHill/imdb_description
JunHill
2024-10-13T11:36:59Z
27
0
[ "language:en", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-11T17:33:33Z
0
--- language: - en dataset_info: features: - name: movie_id dtype: string - name: label dtype: int64 - name: text dtype: string - name: originalTitle dtype: string - name: primaryTitle dtype: string - name: titleType dtype: string - name: genres dtype: string - name: endYear dtype: string - name: token_length dtype: int64 splits: - name: train num_bytes: 34096120 num_examples: 23796 - name: test num_bytes: 33037937 num_examples: 23506 download_size: 41324633 dataset_size: 67134057 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
KilicMehmet/sagli_ds
KilicMehmet
2025-04-12T15:16:56Z
18
0
[ "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-12T15:16:54Z
0
--- dataset_info: features: - name: Soru;cevap dtype: string - name: review_length dtype: int64 splits: - name: train num_bytes: 0 num_examples: 0 - name: validation num_bytes: 0 num_examples: 0 download_size: 1600 dataset_size: 0 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
MLexperiments/prompt-injection-verizon
MLexperiments
2025-05-06T12:11:06Z
34
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-05T07:55:53Z
0
--- dataset_info: features: - name: label dtype: int64 - name: text dtype: string splits: - name: test num_bytes: 108347 num_examples: 1664 - name: train num_bytes: 357588 num_examples: 4465 download_size: 336973 dataset_size: 465935 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
ZHUZHUXIADDD/so100_test113
ZHUZHUXIADDD
2025-03-31T11:08:56Z
30
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "tutorial" ]
[ "robotics" ]
2025-03-31T11:04:41Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 50, "total_frames": 15734, "total_tasks": 1, "total_videos": 100, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:50" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
TribeAlpha/finetuning_demo5
TribeAlpha
2025-03-03T05:45:41Z
17
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-03T05:45:38Z
0
--- dataset_info: features: - name: prompt dtype: string splits: - name: train num_bytes: 3349 num_examples: 10 download_size: 2493 dataset_size: 3349 configs: - config_name: default data_files: - split: train path: data/train-* ---