datasetId
large_stringlengths
6
116
author
large_stringlengths
2
42
last_modified
large_stringdate
2021-04-29 15:34:29
2025-06-25 02:40:10
downloads
int64
0
3.97M
likes
int64
0
7.74k
tags
large listlengths
1
7.92k
task_categories
large listlengths
0
48
createdAt
large_stringdate
2022-03-02 23:29:22
2025-06-25 00:32:52
trending_score
float64
0
64
card
large_stringlengths
31
1.01M
kh4dien/mc-german
kh4dien
2025-01-24T01:02:37Z
54
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-24T01:02:36Z
0
--- dataset_info: features: - name: question dtype: string - name: correct dtype: string - name: incorrect dtype: string splits: - name: train num_bytes: 326045.99022736336 num_examples: 5145 download_size: 161034 dataset_size: 326045.99022736336 configs: - config_name: default data_files: - split: train path: data/train-* ---
hirundo-io/TruthfulQA-hallucinations-free-text
hirundo-io
2025-04-21T11:51:52Z
37
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-21T11:49:43Z
0
--- dataset_info: features: - name: question dtype: string - name: answer dtype: string splits: - name: train num_bytes: 93487 num_examples: 817 download_size: 58366 dataset_size: 93487 configs: - config_name: default data_files: - split: train path: data/train-* ---
Allen44/high-quality-instruction-response-pairs
Allen44
2025-04-13T10:59:07Z
15
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-12T05:12:59Z
0
--- dataset_info: features: - name: instruction dtype: string - name: response dtype: string - name: rating dtype: int64 splits: - name: train num_bytes: 103446 num_examples: 100 download_size: 64786 dataset_size: 103446 configs: - config_name: default data_files: - split: train path: data/train-* ---
uzair921/SKILLSPAN_embeddings_text
uzair921
2025-02-07T22:44:28Z
14
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-07T22:44:17Z
0
--- dataset_info: features: - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': O '1': B-Skill '2': I-Skill - name: context dtype: string - name: embedding sequence: float64 splits: - name: train num_bytes: 77854136 num_examples: 3075 - name: validation num_bytes: 778061 num_examples: 1397 - name: test num_bytes: 826998 num_examples: 1523 download_size: 55862166 dataset_size: 79459195 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
secmlr/clean_dataset_dsformat_filtered_together-deepseek-reasoner_train_len_8000_inputlen_5000
secmlr
2025-02-28T06:11:59Z
24
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-28T04:06:59Z
0
--- dataset_info: features: - name: conversations list: - name: from dtype: string - name: value dtype: string - name: system dtype: string - name: idx dtype: int64 - name: cwe sequence: string splits: - name: train num_bytes: 49119405 num_examples: 4978 download_size: 12770997 dataset_size: 49119405 configs: - config_name: default data_files: - split: train path: data/train-* ---
scubaSteve512/nfl_prediction_demo
scubaSteve512
2024-10-20T23:38:04Z
19
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-20T23:37:52Z
0
--- dataset_info: features: - name: prompt dtype: string splits: - name: train num_bytes: 158904 num_examples: 670 download_size: 27959 dataset_size: 158904 configs: - config_name: default data_files: - split: train path: data/train-* ---
juliadollis/FINET_30mil_qwen25_7bI_promptoriginal
juliadollis
2025-02-22T23:08:02Z
16
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-22T23:08:00Z
0
--- dataset_info: features: - name: Description dtype: string - name: Patient dtype: string - name: Doctor dtype: string - name: Translated_Description dtype: string - name: Translated_Patient dtype: string - name: Translated_Doctor dtype: string - name: Inferencia dtype: string splits: - name: train num_bytes: 261326 num_examples: 100 download_size: 132918 dataset_size: 261326 configs: - config_name: default data_files: - split: train path: data/train-* ---
stalaei/realmath_2025-2025-03
stalaei
2025-06-24T01:46:55Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-24T01:46:45Z
0
--- dataset_info: features: - name: paper_link dtype: string - name: theorem dtype: string - name: question dtype: string - name: answer dtype: string - name: context dtype: string - name: submission_date dtype: string splits: - name: train num_bytes: 286850323 num_examples: 508 download_size: 166903020 dataset_size: 286850323 configs: - config_name: default data_files: - split: train path: data/train-* ---
RyanYr/reflect_nonGenCritic_llama8b-t0_gt-t1_mstllrg-t2_80k
RyanYr
2024-12-29T23:34:16Z
16
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-29T04:19:27Z
0
--- dataset_info: features: - name: problem dtype: string - name: generated_solution dtype: string - name: answer dtype: string - name: problem_source dtype: string - name: response@0 sequence: string - name: response@0_ans sequence: string - name: response@0_correctness sequence: bool - name: response@2 sequence: string splits: - name: train num_bytes: 338596643 num_examples: 80000 download_size: 145566590 dataset_size: 338596643 configs: - config_name: default data_files: - split: train path: data/train-* ---
alangai/freedata
alangai
2024-10-07T19:17:00Z
13
0
[ "license:apache-2.0", "region:us" ]
[]
2024-10-07T19:17:00Z
0
--- license: apache-2.0 ---
yunjae-won/mp_gemma9b_sft_ogd_rms_epoch4_10k_n8
yunjae-won
2025-05-17T06:37:12Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-17T03:46:45Z
0
--- dataset_info: features: - name: instruction dtype: string - name: output dtype: string - name: policy_logps dtype: float64 - name: ref_logps dtype: float64 - name: weight dtype: float64 splits: - name: train num_bytes: 29067637 num_examples: 10000 download_size: 4218963 dataset_size: 29067637 configs: - config_name: default data_files: - split: train path: data/train-* ---
hackulos/my-distiset-bb1120ca
hackulos
2025-02-15T21:46:18Z
10
0
[ "task_categories:text-classification", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "library:distilabel", "region:us", "synthetic", "distilabel", "rlaif", "datacraft" ]
[ "text-classification" ]
2025-02-15T21:46:16Z
0
--- size_categories: n<1K task_categories: - text-classification dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': dora '1': cyber resilience act '2': red directive splits: - name: train num_bytes: 40113 num_examples: 99 download_size: 16390 dataset_size: 40113 configs: - config_name: default data_files: - split: train path: data/train-* tags: - synthetic - distilabel - rlaif - datacraft --- <p align="left"> <a href="https://github.com/argilla-io/distilabel"> <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/> </a> </p> # Dataset Card for my-distiset-bb1120ca This dataset has been created with [distilabel](https://distilabel.argilla.io/). ## Dataset Summary This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI: ```console distilabel pipeline run --config "https://huggingface.co/datasets/hackulos/my-distiset-bb1120ca/raw/main/pipeline.yaml" ``` or explore the configuration: ```console distilabel pipeline info --config "https://huggingface.co/datasets/hackulos/my-distiset-bb1120ca/raw/main/pipeline.yaml" ``` ## Dataset structure The examples have the following structure per configuration: <details><summary> Configuration: default </summary><hr> ```json { "label": 1, "text": "The General Data Protection Regulation (GDPR) of the European Union has imposed obligations on organizations to implement technical and organizational measures to ensure the security of personal data. One of these measures is the pseudonymization of personal data, which involves transforming the data into a form that is no longer directly associated with an individual, while still maintaining its utility. This concept is similar to encryption, but the difference lies in the fact that pseudonymization is reversible, whereas encryption is not. Furthermore, pseudonymization is required to be performed in such a way that the original data cannot be easily reversed, thereby achieving the goal of protecting sensitive information." } ``` This subset can be loaded as: ```python from datasets import load_dataset ds = load_dataset("hackulos/my-distiset-bb1120ca", "default") ``` Or simply as it follows, since there's only one configuration and is named `default`: ```python from datasets import load_dataset ds = load_dataset("hackulos/my-distiset-bb1120ca") ``` </details>
neelabh17/2025-04-21_13.22.59.114647_partial_40-Qwen2.5-3B-Instruct
neelabh17
2025-04-21T17:23:05Z
20
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-21T17:23:03Z
0
--- dataset_info: features: - name: response_0 dtype: string - name: answer_0 dtype: string - name: correct_0 dtype: int64 splits: - name: train num_bytes: 6859589 num_examples: 6076 download_size: 2314219 dataset_size: 6859589 configs: - config_name: default data_files: - split: train path: data/train-* ---
saintlyk1d/dont-say-it-prompts-player1-basic
saintlyk1d
2025-04-11T05:14:33Z
54
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-11T05:14:32Z
0
--- dataset_info: features: - name: secret_word dtype: string - name: prompt dtype: string splits: - name: train num_bytes: 143686 num_examples: 494 download_size: 17475 dataset_size: 143686 configs: - config_name: default data_files: - split: train path: data/train-* ---
abhinav302019/olympiad_data_10018
abhinav302019
2025-02-24T11:24:35Z
16
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-24T11:24:33Z
0
--- dataset_info: features: - name: problem dtype: string - name: Known_Solution dtype: string - name: Known_Answer dtype: string - name: Generated_Solution dtype: string - name: Generated_Answer dtype: string - name: Judge_Evaluation dtype: string - name: Judge_Rating dtype: string - name: Judge_Justification dtype: string splits: - name: train num_bytes: 129638 num_examples: 9 download_size: 99961 dataset_size: 129638 configs: - config_name: default data_files: - split: train path: data/train-* ---
mdeputy/053025-segmentation-masks
mdeputy
2025-05-31T06:09:45Z
62
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-31T05:56:32Z
0
--- dataset_info: features: - name: id dtype: string - name: mask dtype: array2_d: shape: - 5632 - 5632 dtype: uint8 splits: - name: chunk_0 num_bytes: 158709895 num_examples: 5 - name: chunk_1 num_bytes: 158709895 num_examples: 5 - name: chunk_2 num_bytes: 158709895 num_examples: 5 - name: chunk_3 num_bytes: 158709898 num_examples: 5 - name: chunk_4 num_bytes: 158709900 num_examples: 5 - name: chunk_5 num_bytes: 158709900 num_examples: 5 - name: chunk_6 num_bytes: 158709900 num_examples: 5 - name: chunk_7 num_bytes: 158709900 num_examples: 5 - name: chunk_8 num_bytes: 158709900 num_examples: 5 - name: chunk_9 num_bytes: 158709900 num_examples: 5 - name: chunk_10 num_bytes: 158709900 num_examples: 5 - name: chunk_11 num_bytes: 158709900 num_examples: 5 - name: chunk_12 num_bytes: 158709900 num_examples: 5 - name: chunk_13 num_bytes: 158709895 num_examples: 5 - name: chunk_14 num_bytes: 158709895 num_examples: 5 - name: chunk_15 num_bytes: 158709895 num_examples: 5 - name: chunk_16 num_bytes: 158709895 num_examples: 5 - name: chunk_17 num_bytes: 158709895 num_examples: 5 - name: chunk_18 num_bytes: 158709895 num_examples: 5 - name: chunk_19 num_bytes: 158709895 num_examples: 5 - name: chunk_20 num_bytes: 158709895 num_examples: 5 - name: chunk_21 num_bytes: 158709895 num_examples: 5 - name: chunk_22 num_bytes: 158709895 num_examples: 5 - name: chunk_23 num_bytes: 158709895 num_examples: 5 - name: chunk_24 num_bytes: 95225937 num_examples: 3 download_size: 11348515 dataset_size: 3904263465 configs: - config_name: default data_files: - split: chunk_0 path: data/chunk_0-* - split: chunk_1 path: data/chunk_1-* - split: chunk_2 path: data/chunk_2-* - split: chunk_3 path: data/chunk_3-* - split: chunk_4 path: data/chunk_4-* - split: chunk_5 path: data/chunk_5-* - split: chunk_6 path: data/chunk_6-* - split: chunk_7 path: data/chunk_7-* - split: chunk_8 path: data/chunk_8-* - split: chunk_9 path: data/chunk_9-* - split: chunk_10 path: data/chunk_10-* - split: chunk_11 path: data/chunk_11-* - split: chunk_12 path: data/chunk_12-* - split: chunk_13 path: data/chunk_13-* - split: chunk_14 path: data/chunk_14-* - split: chunk_15 path: data/chunk_15-* - split: chunk_16 path: data/chunk_16-* - split: chunk_17 path: data/chunk_17-* - split: chunk_18 path: data/chunk_18-* - split: chunk_19 path: data/chunk_19-* - split: chunk_20 path: data/chunk_20-* - split: chunk_21 path: data/chunk_21-* - split: chunk_22 path: data/chunk_22-* - split: chunk_23 path: data/chunk_23-* - split: chunk_24 path: data/chunk_24-* ---
olachinkei/BFCL_jp
olachinkei
2025-06-24T14:11:16Z
0
0
[ "license:apache-2.0", "region:us" ]
[]
2025-06-24T14:11:16Z
0
--- license: apache-2.0 ---
ryota39/llm-jp-chatbot-arena-conversations-reformatted
ryota39
2025-05-19T08:15:20Z
58
0
[ "license:cc", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-19T08:07:23Z
0
--- dataset_info: features: - name: id dtype: string - name: model_a dtype: string - name: model_b dtype: string - name: winner dtype: string - name: conversation_a list: - name: content dtype: string - name: role dtype: string - name: speaker dtype: string - name: conversation_b list: - name: content dtype: string - name: role dtype: string - name: speaker dtype: string - name: turn dtype: int64 - name: annoy dtype: bool - name: language dtype: string splits: - name: train num_bytes: 4264749 num_examples: 990 download_size: 1812809 dataset_size: 4264749 configs: - config_name: default data_files: - split: train path: data/train-* license: cc --- - [llm-jp/llm-jp-chatbot-arena-conversations](https://huggingface.co/datasets/llm-jp/llm-jp-chatbot-arena-conversations)を整形したデータセットです
Deason11/so100_test7
Deason11
2025-03-14T07:49:56Z
35
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "tutorial" ]
[ "robotics" ]
2025-03-14T07:48:50Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 2, "total_frames": 590, "total_tasks": 1, "total_videos": 4, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 7 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_wrist_angle", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 7 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_wrist_angle", "main_gripper" ] }, "observation.images.L_OverheadCamera": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
HanXiao1999/UI-Genie-Agent-5k
HanXiao1999
2025-05-29T04:27:31Z
83
0
[ "task_categories:image-text-to-text", "language:en", "license:mit", "size_categories:1K<n<10K", "format:json", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2505.21496", "region:us" ]
[ "image-text-to-text" ]
2025-05-27T15:00:50Z
0
--- task_categories: - image-text-to-text language: - en license: mit --- This repository contains the dataset from the paper [UI-Genie: A Self-Improving Approach for Iteratively Boosting MLLM-based Mobile GUI Agents](https://huggingface.co/papers/2505.21496). Github: https://github.com/Euphoria16/UI-Genie
Min-Jaewon/sdxl_laion_2_0
Min-Jaewon
2025-01-17T01:55:09Z
147
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-17T01:47:30Z
0
--- dataset_info: features: - name: id dtype: string - name: prompt dtype: string - name: latents dtype: array4_d: shape: - 2 - 4 - 128 - 128 dtype: float32 - name: prompt_embed dtype: array3_d: shape: - 1 - 77 - 2048 dtype: float32 - name: pooled_prompt_embed dtype: array2_d: shape: - 1 - 1280 dtype: float32 splits: - name: train num_bytes: 8735479669 num_examples: 7500 download_size: 8739413858 dataset_size: 8735479669 configs: - config_name: default data_files: - split: train path: data/train-* ---
nreHieW/Extracted_GSM
nreHieW
2025-01-26T16:44:11Z
19
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-23T01:14:36Z
0
--- dataset_info: features: - name: type dtype: string - name: question dtype: string - name: answer dtype: string splits: - name: train num_bytes: 1890281 num_examples: 7473 download_size: 1068227 dataset_size: 1890281 configs: - config_name: default data_files: - split: train path: data/train-* --- To reproduce ```python from datasets import load_dataset, Dataset from tqdm import tqdm ds = load_dataset("allenai/RLVR-GSM") out = [] for item in tqdm(ds["train"]): text = item['messages'][0]['content'] text = text.split("\n\nQuestion:")[-1].strip() out.append({ "type": "math", "question": text, 'answer': item['ground_truth'] }) ds = Dataset.from_list(out) ```
junn991/asdasd
junn991
2024-11-19T17:04:42Z
17
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-18T08:46:08Z
0
--- dataset_info: features: - name: instruction dtype: string - name: output dtype: string - name: input dtype: string splits: - name: train num_bytes: 5380 num_examples: 90 download_size: 5714 dataset_size: 5380 configs: - config_name: default data_files: - split: train path: data/train-* ---
KiViDrag/breastmnist_50
KiViDrag
2024-11-08T11:29:48Z
61
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-08T09:46:23Z
0
--- dataset_info: features: - name: image dtype: image - name: label dtype: class_label: names: '0': malignant '1': normal, benign splits: - name: train num_bytes: 4346269.75 num_examples: 4914 download_size: 4440909 dataset_size: 4346269.75 configs: - config_name: default data_files: - split: train path: data/train-* ---
ZixuanKe/trade_the_event_sup_dpo_binarized
ZixuanKe
2024-11-04T21:46:46Z
20
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-03T22:52:43Z
0
--- dataset_info: features: - name: prompt dtype: string - name: ground_truth_chosen dtype: string - name: v1_rejected dtype: string splits: - name: train num_bytes: 1390170654.0 num_examples: 243425 - name: validation num_bytes: 72814246.0 num_examples: 12812 download_size: 793179358 dataset_size: 1462984900.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
french-datasets/jpacifico_merged-admin-def-dataset-16k
french-datasets
2025-06-22T11:39:05Z
0
0
[ "language:fra", "region:us" ]
[]
2025-06-22T11:38:16Z
0
--- language: "fra" viewer: false --- Ce répertoire est vide, il a été créé pour améliorer le référencement du jeu de données [jpacifico/merged-admin-def-dataset-16k](https://huggingface.co/datasets/jpacifico/merged-admin-def-dataset-16k).
rakhman-llm/XCodeEval-Java-Dataset
rakhman-llm
2024-11-26T01:16:19Z
30
0
[ "task_categories:text-generation", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "code" ]
[ "text-generation" ]
2024-11-25T05:36:22Z
0
--- task_categories: - text-generation tags: - code size_categories: - 100K<n<1M ---
yav1327/music-generation-llm
yav1327
2024-10-17T15:35:25Z
23
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-17T15:35:07Z
0
--- dataset_info: features: - name: song_id dtype: int64 - name: filename dtype: string - name: filepath dtype: audio: sampling_rate: 16000 - name: genre_id dtype: int64 - name: genre dtype: string splits: - name: train num_bytes: 369471304.0 num_examples: 945 download_size: 369252420 dataset_size: 369471304.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
michsethowusu/dinka-dyula_sentence-pairs
michsethowusu
2025-04-03T10:26:13Z
52
0
[ "size_categories:10K<n<100K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-03T10:26:10Z
0
--- dataset_info: features: - name: score dtype: float32 - name: Dinka dtype: string - name: Dyula dtype: string splits: - name: train num_bytes: 2860214 num_examples: 17561 download_size: 2860214 dataset_size: 2860214 configs: - config_name: default data_files: - split: train path: Dinka-Dyula_Sentence-Pairs.csv --- # Dinka-Dyula_Sentence-Pairs Dataset This dataset contains sentence pairs for African languages along with similarity scores. It can be used for machine translation, sentence alignment, or other natural language processing tasks. This dataset is based on the NLLBv1 dataset, published on OPUS under an open-source initiative led by META. You can find more information here: [OPUS - NLLB-v1](https://opus.nlpl.eu/legacy/NLLB-v1.php) ## Metadata - **File Name**: Dinka-Dyula_Sentence-Pairs - **Number of Rows**: 17561 - **Number of Columns**: 3 - **Columns**: score, Dinka, Dyula ## Dataset Description The dataset contains sentence pairs in African languages with an associated similarity score. Each row consists of three columns: 1. `score`: The similarity score between the two sentences (range from 0 to 1). 2. `Dinka`: The first sentence in the pair (language 1). 3. `Dyula`: The second sentence in the pair (language 2). This dataset is intended for use in training and evaluating machine learning models for tasks like translation, sentence similarity, and cross-lingual transfer learning. ## References Below are papers related to how the data was collected and used in various multilingual and cross-lingual applications: [1] Holger Schwenk and Matthijs Douze, Learning Joint Multilingual Sentence Representations with Neural Machine Translation, ACL workshop on Representation Learning for NLP, 2017 [2] Holger Schwenk and Xian Li, A Corpus for Multilingual Document Classification in Eight Languages, LREC, pages 3548-3551, 2018. [3] Holger Schwenk, Filtering and Mining Parallel Data in a Joint Multilingual Space ACL, July 2018 [4] Alexis Conneau, Guillaume Lample, Ruty Rinott, Adina Williams, Samuel R. Bowman, Holger Schwenk and Veselin Stoyanov, XNLI: Cross-lingual Sentence Understanding through Inference, EMNLP, 2018. [5] Mikel Artetxe and Holger Schwenk, Margin-based Parallel Corpus Mining with Multilingual Sentence Embeddings arXiv, Nov 3 2018. [6] Mikel Artetxe and Holger Schwenk, Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond arXiv, Dec 26 2018. [7] Holger Schwenk, Vishrav Chaudhary, Shuo Sun, Hongyu Gong and Paco Guzman, WikiMatrix: Mining 135M Parallel Sentences in 1620 Language Pairs from Wikipedia arXiv, July 11 2019. [8] Holger Schwenk, Guillaume Wenzek, Sergey Edunov, Edouard Grave and Armand Joulin CCMatrix: Mining Billions of High-Quality Parallel Sentences on the WEB [9] Paul-Ambroise Duquenne, Hongyu Gong, Holger Schwenk, Multimodal and Multilingual Embeddings for Large-Scale Speech Mining, NeurIPS 2021, pages 15748-15761. [10] Kevin Heffernan, Onur Celebi, and Holger Schwenk, Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages
yoonholee/metamath-hint-and-data-v4
yoonholee
2025-03-01T19:09:48Z
18
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-28T19:52:03Z
0
--- dataset_info: features: - name: problem dtype: string - name: answer dtype: string - name: completion sequence: string - name: completion_answer sequence: string - name: completion_correct sequence: bool - name: completion_succ_rate dtype: float64 - name: domain dtype: string - name: context dtype: string - name: hint dtype: string splits: - name: train num_bytes: 1225053097 num_examples: 40000 download_size: 375337679 dataset_size: 1225053097 configs: - config_name: default data_files: - split: train path: data/train-* ---
Cornell-AGI/math_size_qwen2.5_3b_eval
Cornell-AGI
2025-05-29T23:19:30Z
40
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-29T23:19:23Z
0
--- dataset_info: features: - name: level dtype: string - name: type dtype: string - name: data_source dtype: string - name: prompt list: - name: content dtype: string - name: role dtype: string - name: ability dtype: string - name: reward_model struct: - name: ground_truth dtype: string - name: style dtype: string - name: extra_info struct: - name: answer dtype: string - name: index dtype: int64 - name: question dtype: string - name: split dtype: string - name: response_0 dtype: string - name: response_1 dtype: string - name: response_2 dtype: string - name: response_3 dtype: string - name: response_4 dtype: string - name: response_5 dtype: string - name: response_6 dtype: string - name: response_7 dtype: string - name: response_8 dtype: string - name: response_9 dtype: string - name: response_10 dtype: string - name: response_11 dtype: string - name: response_12 dtype: string - name: response_13 dtype: string - name: response_14 dtype: string - name: response_15 dtype: string - name: response_16 dtype: string - name: response_17 dtype: string - name: response_18 dtype: string - name: response_19 dtype: string - name: response_20 dtype: string - name: response_21 dtype: string - name: response_22 dtype: string - name: response_23 dtype: string - name: response_24 dtype: string - name: response_25 dtype: string - name: response_26 dtype: string - name: response_27 dtype: string - name: response_28 dtype: string - name: response_29 dtype: string - name: response_30 dtype: string - name: response_31 dtype: string - name: eval_0 dtype: float64 - name: eval_1 dtype: float64 - name: eval_2 dtype: float64 - name: eval_3 dtype: float64 - name: eval_4 dtype: float64 - name: eval_5 dtype: float64 - name: eval_6 dtype: float64 - name: eval_7 dtype: float64 - name: eval_8 dtype: float64 - name: eval_9 dtype: float64 - name: eval_10 dtype: float64 - name: eval_11 dtype: float64 - name: eval_12 dtype: float64 - name: eval_13 dtype: float64 - name: eval_14 dtype: float64 - name: eval_15 dtype: float64 - name: eval_16 dtype: float64 - name: eval_17 dtype: float64 - name: eval_18 dtype: float64 - name: eval_19 dtype: float64 - name: eval_20 dtype: float64 - name: eval_21 dtype: float64 - name: eval_22 dtype: float64 - name: eval_23 dtype: float64 - name: eval_24 dtype: float64 - name: eval_25 dtype: float64 - name: eval_26 dtype: float64 - name: eval_27 dtype: float64 - name: eval_28 dtype: float64 - name: eval_29 dtype: float64 - name: eval_30 dtype: float64 - name: eval_31 dtype: float64 splits: - name: train num_bytes: 413000734 num_examples: 7500 download_size: 187731245 dataset_size: 413000734 configs: - config_name: default data_files: - split: train path: data/train-* ---
infinite-dataset-hub/FitHealth
infinite-dataset-hub
2025-03-22T22:03:24Z
23
0
[ "license:mit", "size_categories:n<1K", "format:csv", "modality:tabular", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "infinite-dataset-hub", "synthetic" ]
[]
2025-03-22T22:03:23Z
0
--- license: mit tags: - infinite-dataset-hub - synthetic --- # FitHealth tags: Healthcare, Physical Activity, Biometric Analysis _Note: This is an AI-generated dataset so its content may be inaccurate or false_ **Dataset Description:** The 'FitHealth' dataset comprises records of individuals participating in fitness-related activities, paired with biometric data to monitor their health. It includes information such as types of physical activities, duration, intensity, and corresponding health metrics like heart rate, blood pressure, and body mass index (BMI). This dataset can be used to analyze the impact of different fitness routines on health parameters and to develop personalized fitness plans. **CSV Content Preview:** ```csv activity_id,date,activity_type,duration,intensity,heart_rate,blood_pressure,bmi 001,2023-01-15,Running,45,High,172,120/80,23.5 002,2023-01-18,Cycling,60,Moderate,155,115/75,22.1 003,2023-01-20,Swimming,30,Low,130,118/78,24.2 004,2023-01-22,Yoga,60,Low,95,110/70,21.8 005,2023-01-25,Weightlifting,45,High,165,122/82,25.3 ``` **Source of the data:** The dataset was generated using the [Infinite Dataset Hub](https://huggingface.co/spaces/infinite-dataset-hub/infinite-dataset-hub) and microsoft/Phi-3-mini-4k-instruct using the query 'Fitness': - **Dataset Generation Page**: https://huggingface.co/spaces/infinite-dataset-hub/infinite-dataset-hub?q=Fitness&dataset=FitHealth&tags=Healthcare,+Physical+Activity,+Biometric+Analysis - **Model**: https://huggingface.co/microsoft/Phi-3-mini-4k-instruct - **More Datasets**: https://huggingface.co/datasets?other=infinite-dataset-hub
mevsg/Gongguan-TextRegions-v1
mevsg
2025-03-12T10:02:57Z
15
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T09:58:13Z
0
--- dataset_info: features: - name: image_path dtype: string - name: image_size sequence: int64 - name: bboxes sequence: sequence: int64 - name: labels sequence: string - name: page_id dtype: string - name: image dtype: image splits: - name: train num_bytes: 51276245.09090909 num_examples: 8 - name: validation num_bytes: 19228591.90909091 num_examples: 3 download_size: 70461678 dataset_size: 70504837.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
LabARSS/MMLU-Pro-single-token-entropy
LabARSS
2025-05-26T13:43:03Z
0
0
[ "language:en", "license:mit", "size_categories:100K<n<1M", "format:csv", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2503.01688", "region:us" ]
[]
2025-05-26T12:59:29Z
0
--- configs: - config_name: mistral_24b data_files: "mmlu_mistral_24b.tsv" - config_name: mistral_24b_w_fallback_if_unknown data_files: "mmlu_mistral_24b_w_fallback_if_unknown.tsv" - config_name: phi4 data_files: "mmlu_phi4.tsv" - config_name: phi4_w_fallback_if_unknown data_files: "mmlu_phi4_w_fallback_if_unknown.tsv" - config_name: phi4_w_fallback_if_unknown_alternative_prompt data_files: "mmlu_phi4_w_fallback_if_unknown_alternative_prompt.tsv" - config_name: phi4mini data_files: "mmlu_phi4mini.tsv" - config_name: phi4mini_w_fallback_if_unknown data_files: "mmlu_phi4mini_w_fallback_if_unknown.tsv" - config_name: phi4mini_w_fallback_if_unknown_alternative_prompt data_files: "mmlu_phi4mini_w_fallback_if_unknown_alternative_prompt.tsv" - config_name: qwen_3b data_files: "mmlu_qwen_3b.tsv" - config_name: qwen_3b_w_fallback_if_unknown data_files: "mmlu_qwen_3b_w_fallback_if_unknown.tsv" - config_name: qwen_3b_w_fallback_if_unknown_alternative_prompt data_files: "mmlu_qwen_3b_w_fallback_if_unknown_alternative_prompt.tsv" license: mit language: - en pretty_name: MMLU Pro with single token response entropy metadata for Mistral 24B, Phi4, Phi4-mini, Qwen2.5 3B size_categories: - 10K<n<100K --- # Dataset Card for MMLU Pro with single token response entropy metadata for Mistral 24B, Phi4, Phi4-mini, Qwen2.5 3B <!-- Provide a quick summary of the dataset. --> MMLU Pro dataset with single token response entropy metadata for Mistral 24B, Phi4, Phi4-mini, Qwen2.5 3B ## Dataset Details ### Dataset Description Following up on the results from ["When an LLM is apprehensive about its answers -- and when its uncertainty is justified"](https://arxiv.org/abs/2503.01688), we measure the response entopy for MMLU Pro dataset when the model is prompted to answer questions directly as a single token. We collect the entropy across 3 different sets of prompts: the ones that allow the model to answer "I do not know" and the ones that do not. - **Language(s) (NLP):** English - **License:** MIT ## Dataset Structure Columns: - All columns as in the original [MMLU Pro dataset](https://huggingface.co/datasets/TIGER-Lab/MMLU-Pro); - "entropy_ans_correct_{model_internal_name}" - (bool) correctness of the model answer; - "entropy_value_{model_internal_name}" - (float) entropy value. Default (if answer is incorrectly formatted or missing): 0.0. - "entropy_ans_{model_internal_name}" - (str) whole decoded response. ## Prompts ### Default System prompt: ``` The following are multiple choice questions about {subject}. Write down ONLY the NUMBER of the correct answer and nothing else. ``` User prompt: ``` Question: ... Options: 1. ... 2. ... ... n. ... Choose one of the answers. Write down ONLY the NUMBER of the correct answer and nothing else.". ``` ### With fallback if unknown We allow the model to self-estimate its uncertainty and reply "0" as a special option denoting "I do not know". System prompt: ``` The following are multiple choice questions about {subject}. If you are certain about the answer return the correct option number, otherwise return 0. Write down ONLY the NUMBER and nothing else. ``` User prompt: ``` Question: ... Options: 1. ... 2. ... ... n. ... Choose one of the answers. If you are certain about the answer return the correct option number, otherwise return 0. Write down ONLY the NUMBER and nothing else. ``` ### With fallback if unknown (alternative) Alternative version of the fallback prompt. System prompt: ``` The following are multiple choice questions about {subject}. If you know the answer return the correct option number, otherwise return 0. Write down ONLY the NUMBER and nothing else. ``` User prompt: ``` Question: ... Options: 1. ... 2. ... ... n. ... Choose one of the answers. If you know the answer return the correct option number, otherwise return 0. Write down ONLY the NUMBER and nothing else. ``` ## Hyperparameters ``` outputs = model.generate( **inputs, max_new_tokens=1, return_dict_in_generate=True, output_scores=True, temperature=None, top_p=None, top_k=None, do_sample=False, num_beams=1, pad_token_id=tokenizer.eos_token_id, ) ``` ## Citation TBD
ilovesushiandkimchiandmalaxiangguo/for_bisai
ilovesushiandkimchiandmalaxiangguo
2025-05-03T07:51:37Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-03T07:50:17Z
0
--- dataset_info: features: - name: image dtype: image - name: text dtype: string splits: - name: train num_bytes: 539880496.0 num_examples: 297 download_size: 539840457 dataset_size: 539880496.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
vedataydin/tarim2
vedataydin
2025-03-25T12:59:21Z
15
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-25T12:58:57Z
0
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: float64 - name: response dtype: string splits: - name: train num_bytes: 1300.8 num_examples: 4 - name: test num_bytes: 315 num_examples: 1 download_size: 6517 dataset_size: 1615.8 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
michsethowusu/french-fulah_sentence-pairs
michsethowusu
2025-05-17T17:24:10Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-17T15:25:30Z
0
--- dataset_info: features: - name: similarity dtype: float32 - name: French dtype: string - name: Fulah dtype: string splits: - name: train num_bytes: 98351097 num_examples: 701161 download_size: 69409466 dataset_size: 98351097 configs: - config_name: default data_files: - split: train path: data/train-* --- # French-Fulah_Sentence-Pairs Dataset This dataset can be used for machine translation, sentence alignment, or other natural language processing tasks. It is based on the NLLBv1 dataset, published on OPUS under an open-source initiative led by META. You can find more information here: [OPUS - NLLB-v1](https://opus.nlpl.eu/legacy/NLLB-v1.php) ## Metadata - **File Name**: French-Fulah_Sentence-Pairs - **File Size**: 100126177 bytes - **Languages**: French, French ## Dataset Description The dataset contains sentence pairs in African languages with an associated similarity score. The file is structured as a CSV with three columns: 1. `similarity`: The similarity score between the two sentences (range from 0 to 1). 2. `French`: The first sentence in the pair. 3. `French`: The second sentence in the pair. This dataset is intended for use in training and evaluating machine learning models for tasks like translation, sentence similarity, and cross-lingual transfer learning. ## References Below are papers related to how the data was collected and used in various multilingual and cross-lingual applications: [1] Holger Schwenk and Matthijs Douze, "Learning Joint Multilingual Sentence Representations with Neural Machine Translation", ACL workshop on Representation Learning for NLP, 2017 [2] Holger Schwenk and Xian Li, "A Corpus for Multilingual Document Classification in Eight Languages", LREC, pages 3548-3551, 2018. [3] Holger Schwenk, "Filtering and Mining Parallel Data in a Joint Multilingual Space", ACL, July 2018 [4] Alexis Conneau, Guillaume Lample, Ruty Rinott, Adina Williams, Samuel R. Bowman, Holger Schwenk and Veselin Stoyanov, "XNLI: Cross-lingual Sentence Understanding through Inference", EMNLP, 2018. [5] Mikel Artetxe and Holger Schwenk, "Margin-based Parallel Corpus Mining with Multilingual Sentence Embeddings", arXiv, Nov 3 2018. [6] Mikel Artetxe and Holger Schwenk, "Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond", arXiv, Dec 26 2018. [7] Holger Schwenk, Vishrav Chaudhary, Shuo Sun, Hongyu Gong and Paco Guzman, "WikiMatrix: Mining 135M Parallel Sentences in 1620 Language Pairs from Wikipedia", arXiv, July 11 2019. [8] Holger Schwenk, Guillaume Wenzek, Sergey Edunov, Edouard Grave and Armand Joulin, "CCMatrix: Mining Billions of High-Quality Parallel Sentences on the WEB", 2020. [9] Paul-Ambroise Duquenne, Hongyu Gong, Holger Schwenk, "Multimodal and Multilingual Embeddings for Large-Scale Speech Mining", NeurIPS 2021, pages 15748-15761. [10] Kevin Heffernan, Onur Celebi, and Holger Schwenk, "Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages", 2022.
LovrOP/cppe-custom-dataset
LovrOP
2024-12-09T14:31:43Z
17
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-09T14:25:48Z
0
--- dataset_info: features: - name: image_id dtype: int64 - name: image_path dtype: string - name: width dtype: int64 - name: height dtype: int64 - name: objects struct: - name: area sequence: int64 - name: bbox sequence: sequence: int64 - name: category sequence: int64 - name: id sequence: int64 splits: - name: train num_bytes: 6971 num_examples: 10 - name: test num_bytes: 6961 num_examples: 10 - name: validation num_bytes: 7021 num_examples: 10 download_size: 19833 dataset_size: 20953 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: validation path: data/validation-* ---
fwnlp/self-instruct-safety-alignment
fwnlp
2024-10-23T23:36:37Z
133
2
[ "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2410.05269", "region:us" ]
[]
2024-10-13T07:32:13Z
0
--- license: apache-2.0 --- **[EMNLP 2024] Data Advisor: Dynamic Data Curation for Safety Alignment of Large Language Models** [**🌐 Homepage**](https://feiwang96.github.io/DataAdvisor/) | [**📖 Paper**](https://arxiv.org/pdf/2410.05269) | [**🤗 Dataset (Data Advisor)**](https://huggingface.co/datasets/fwnlp/data-advisor-safety-alignment) | [**🤗 Dataset (Self-Instruct)**](https://huggingface.co/datasets/fwnlp/self-instruct-safety-alignment) ## Disclaimer The dataset contains content that may be offensive or harmful. This dataset is intended for research purposes, specifically to support efforts aimed at creating safer and less harmful AI systems. Please engage with it responsibly and at your own risk. ## Citation ``` @inproceedings{wang2024data, title={Data Advisor: Dynamic Data Curation for Safety Alignment of Large Language Models}, author={Wang, Fei and Mehrabi, Ninareh and Goyal, Palash and Gupta, Rahul and Chang, Kai-Wei and Galstyan, Aram}, booktitle={Proceedings of EMNLP 2024}, year={2024} } ```
tuenguyen/Medical-Eval-MedBullets_op4
tuenguyen
2025-04-10T11:36:03Z
221
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-10T11:36:01Z
0
--- dataset_info: features: - name: question dtype: string - name: options struct: - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string - name: answer_idx dtype: string splits: - name: train num_bytes: 327147 num_examples: 308 download_size: 170076 dataset_size: 327147 configs: - config_name: default data_files: - split: train path: data/train-* ---
rohith2812/atoi-finetuning-v2
rohith2812
2024-11-18T20:36:27Z
17
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-18T20:36:23Z
0
--- dataset_info: features: - name: image dtype: image - name: combined_text dtype: string splits: - name: train num_bytes: 91610656.0 num_examples: 517 download_size: 88233776 dataset_size: 91610656.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
qingshufan/GA-EVLRU
qingshufan
2025-05-02T12:34:36Z
79
1
[ "task_categories:time-series-forecasting", "language:en", "license:gpl-3.0", "arxiv:2504.07453", "region:us" ]
[ "time-series-forecasting" ]
2025-04-12T09:06:35Z
0
--- language: en license: gpl-3.0 pretty_name: GA-EVLRU task_categories: - time-series-forecasting --- # Dataset Card for GA-EVLRU Battery Swapping Demand Datasets ## Dataset Details ### Dataset Description This dataset consists of battery swapping demand datasets generated by the conversion of the [ST-EVCDP](https://github.com/IntelligentSystemsLab/ST-EVCDP), [UrbanEV](https://github.com/IntelligentSystemsLab/UrbanEV), and [EV-Load-Open-Data](https://github.com/yvenn-amara/ev-load-open-data). There are a total of nine scenario-specific datasets, each containing unstructured demand data (`demand.csv`) and data normalized to 1 hour (`bss.csv`). The dataset is used for the study of probability estimation and scheduling optimization for battery swap stations, where an innovative approach combining the Least Recently Used (LRU) strategy with genetic algorithms and a guided search mechanism is proposed to enhance global optimization capability. ### Dataset Sources - **Repository:** [https://github.com/qingshufan/GA-EVLRU](https://github.com/qingshufan/GA-EVLRU) - **Paper:** [Probability Estimation and Scheduling Optimization for Battery Swap Stations via LRU-Enhanced Genetic Algorithm and Dual-Factor Decision System](https://arxiv.org/abs/2504.07453) ## Uses ### Direct Use The dataset can be directly used for research and development related to battery swapping demand prediction and optimization of battery swap stations. Specifically, it can be used to train and test the proposed probability estimation model and the GA-EVLRU algorithm for better understanding and predicting the battery swapping demand in different scenarios. ### Out-of-Scope Use The dataset is not intended for any applications unrelated to battery swapping demand prediction and optimization of battery swap stations. It should not be used for any commercial purposes that violate the GPL-3.0 license terms, such as selling the dataset without proper authorization. Also, it should not be used to generate any information that may cause harm or discrimination to individuals or groups. ## Dataset Structure Each of the nine datasets (`acn`, `boulder_2021`, `dundee`, `palo_alto`, `paris`, `perth`, `sap`, `st-evcdp`, `urbanev`) contains two main files: `demand.csv` which is the unstructured demand data, and `bss.csv` which is the data normalized to 1 hour. The source of the original data for these datasets is either from [EV-Load-Open-Data](https://github.com/yvenn-amara/ev-load-open-data), [ST-EVCDP](https://github.com/IntelligentSystemsLab/ST-EVCDP), or [UrbanEV](https://github.com/IntelligentSystemsLab/UrbanEV). ## Dataset Creation ### Curation Rationale The motivation for creating this dataset is to provide a comprehensive set of data for studying the battery swapping demand in different scenarios, which can help in the development of more efficient battery swap station scheduling and optimization algorithms. By combining data from different sources and normalizing them, a more consistent and useful dataset for research is obtained. ### Source Data #### Data Collection and Processing The data is collected from multiple open-source repositories: [ST-EVCDP](https://github.com/IntelligentSystemsLab/ST-EVCDP), [UrbanEV](https://github.com/IntelligentSystemsLab/UrbanEV), and [EV-Load-Open-Data](https://github.com/yvenn-amara/ev-load-open-data). The collected data is then processed to generate the battery swapping demand datasets. The processing includes data conversion to create the `demand.csv` and `bss.csv` files for each scenario. The specific processing steps are described in the associated research paper and the code available in the [https://github.com/qingshufan/GA-EVLRU](https://github.com/qingshufan/GA-EVLRU) repository. #### Who are the source data producers? The source data producers for [EV-Load-Open-Data](https://github.com/yvenn-amara/ev-load-open-data) are associated with the project by yvenn-amara. For [ST-EVCDP](https://github.com/IntelligentSystemsLab/ST-EVCDP), it is associated with the IntelligentSystemsLab. And for [UrbanEV](https://github.com/IntelligentSystemsLab/UrbanEV), it is also from the IntelligentSystemsLab. #### Personal and Sensitive Information There is no indication that the dataset contains personal or sensitive information such as addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc. ## Bias, Risks, and Limitations The dataset may have limitations in representing all possible real-world scenarios for battery swapping demand. The data is collected from specific open-source repositories and may not cover all geographical locations, types of electric vehicles, or different charging patterns comprehensively. Also, the normalization process may introduce some biases in representing the actual demand in a completely accurate way. ### Recommendations Users should be aware that the dataset may not fully represent all real-world situations and should use it with caution when making decisions related to large-scale battery swap station deployments. When using the dataset for research, users should consider conducting sensitivity analyses to understand the impact of potential biases and limitations on their results. ## Citation **BibTeX:** ```bibtex @inproceedings{li2025gaevlru, title={Probability Estimation and Scheduling Optimization for Battery Swap Stations via LRU-Enhanced Genetic Algorithm and Dual-Factor Decision System}, author={Anzhen Li and Shufan Qing and Xiaochang Li and Rui Mao and Mingchen Feng}, journal={arXiv preprint arXiv:2504.07453}, year={2025} } ``` ## Dataset Card Contact For any questions or further information about the dataset, you can contact the authors of the associated research paper or raise issues in the [https://github.com/qingshufan/GA-EVLRU](https://github.com/qingshufan/GA-EVLRU) repository.
crtvai/jordan-dataset-v11
crtvai
2024-11-18T09:44:33Z
52
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-18T09:44:03Z
0
--- dataset_info: features: - name: audio dtype: audio: sampling_rate: 16000 - name: text dtype: string splits: - name: train num_bytes: 154612591.6601307 num_examples: 122 - name: test num_bytes: 21152573.594771244 num_examples: 16 - name: validation num_bytes: 19370708.74509804 num_examples: 15 download_size: 169438055 dataset_size: 195135874.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: validation path: data/validation-* ---
kopyl/833-icons-dataset-1024-blip-large
kopyl
2023-11-17T19:35:17Z
90
1
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2023-11-17T19:34:14Z
1
--- configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: image dtype: image - name: text dtype: string splits: - name: train num_bytes: 21063249.0 num_examples: 833 download_size: 19766635 dataset_size: 21063249.0 --- # Dataset Card for "833-icons-dataset-1024-blip-large" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
maniro-ai/2024-10-24-engine-simple-3d-relative-04
maniro-ai
2024-10-25T15:09:18Z
17
0
[ "region:us" ]
[]
2024-10-25T15:09:07Z
0
--- dataset_info: features: - name: observation.state sequence: float32 length: 8 - name: action sequence: float32 length: 8 - name: episode_index dtype: int64 - name: frame_index dtype: int64 - name: timestamp dtype: float32 - name: observation.images.wrist_1 dtype: video_frame - name: observation.images.wrist_2 dtype: video_frame - name: index dtype: int64 splits: - name: train num_bytes: 2602088 num_examples: 12274 download_size: 438636 dataset_size: 2602088 configs: - config_name: default data_files: - split: train path: data/train-* ---
mikesun26card/werewolf_audio_dataset
mikesun26card
2025-03-22T07:48:28Z
18
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-28T19:19:18Z
0
--- dataset_info: features: - name: file_name dtype: audio - name: startTime dtype: string - name: endTime dtype: string - name: playerName dtype: string - name: votingOutcome dtype: string - name: startRoles dtype: string - name: endRoles dtype: string - name: werewolfNames dtype: string - name: warning dtype: string splits: - name: train num_bytes: 4701480983.0 num_examples: 151 download_size: 0 dataset_size: 4701480983.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
KomeijiForce/Fandom_Bandori_Codified_Profiles_Claude_4.0
KomeijiForce
2025-06-09T20:06:49Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-09T20:06:47Z
0
--- dataset_info: features: - name: band dtype: string - name: character dtype: string - name: segment dtype: string - name: code dtype: string splits: - name: train num_bytes: 570117 num_examples: 390 download_size: 224769 dataset_size: 570117 configs: - config_name: default data_files: - split: train path: data/train-* ---
Erroriser/jenny-tts-text-tags-6h-v1
Erroriser
2024-10-07T13:57:17Z
21
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-07T13:57:16Z
0
--- dataset_info: features: - name: file_name dtype: string - name: text dtype: string - name: transcription_normalised dtype: string - name: utterance_pitch_mean dtype: float32 - name: utterance_pitch_std dtype: float32 - name: snr dtype: float64 - name: c50 dtype: float64 - name: speaking_rate dtype: string - name: phonemes dtype: string - name: stoi dtype: float64 - name: si-sdr dtype: float64 - name: pesq dtype: float64 - name: noise dtype: string - name: reverberation dtype: string - name: speech_monotony dtype: string - name: sdr_noise dtype: string - name: pesq_speech_quality dtype: string splits: - name: train num_bytes: 2063542 num_examples: 4000 download_size: 1025292 dataset_size: 2063542 configs: - config_name: default data_files: - split: train path: data/train-* ---
hamishivi/combined_o3_val_data_1
hamishivi
2025-05-31T19:39:23Z
32
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-31T19:39:21Z
0
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string - name: dataset dtype: string - name: ground_truth sequence: string - name: quality dtype: int64 - name: id dtype: string splits: - name: train num_bytes: 11279266 num_examples: 9247 download_size: 6348410 dataset_size: 11279266 configs: - config_name: default data_files: - split: train path: data/train-* ---
BASF-AI/PubChem-Raw
BASF-AI
2025-05-08T19:35:30Z
17
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-08T19:22:07Z
0
--- dataset_info: - config_name: compounds features: - name: CID dtype: int64 - name: Title dtype: string - name: MolecularFormula dtype: string - name: IUPACName dtype: string - name: InChI dtype: string - name: SMILES dtype: string - name: Synonyms dtype: string splits: - name: train num_bytes: 997202779 num_examples: 2087164 download_size: 394262919 dataset_size: 997202779 - config_name: descriptions features: - name: CID dtype: int64 - name: Title dtype: string - name: Description dtype: string - name: ReferenceNumber dtype: int64 - name: SourceName dtype: string - name: SourceID dtype: string - name: ReferenceDescription dtype: string - name: URL dtype: string splits: - name: train num_bytes: 257707353 num_examples: 408530 download_size: 50671541 dataset_size: 257707353 configs: - config_name: compounds data_files: - split: train path: compounds/train-* - config_name: descriptions data_files: - split: train path: descriptions/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_ff596251-154a-4bd0-86d6-af5aef785f95
argilla-internal-testing
2024-11-11T11:09:32Z
19
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-11T11:09:31Z
0
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1454 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
andrewsiah/PersonaPromptPersonalLLM_918
andrewsiah
2024-11-15T15:14:07Z
60
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-15T15:14:05Z
0
--- dataset_info: features: - name: personaid_918_response_1_llama3_sfairx dtype: float64 - name: personaid_918_response_2_llama3_sfairx dtype: float64 - name: personaid_918_response_3_llama3_sfairx dtype: float64 - name: personaid_918_response_4_llama3_sfairx dtype: float64 - name: personaid_918_response_5_llama3_sfairx dtype: float64 - name: personaid_918_response_6_llama3_sfairx dtype: float64 - name: personaid_918_response_7_llama3_sfairx dtype: float64 - name: personaid_918_response_8_llama3_sfairx dtype: float64 - name: prompt dtype: string - name: subset dtype: string - name: prompt_id dtype: int64 - name: response_1 dtype: string - name: response_1_model dtype: string - name: response_2 dtype: string - name: response_2_model dtype: string - name: response_3 dtype: string - name: response_3_model dtype: string - name: response_4 dtype: string - name: response_4_model dtype: string - name: response_5 dtype: string - name: response_5_model dtype: string - name: response_6 dtype: string - name: response_6_model dtype: string - name: response_7 dtype: string - name: response_7_model dtype: string - name: response_8 dtype: string - name: response_8_model dtype: string - name: response_1_gemma_2b dtype: float64 - name: response_2_gemma_2b dtype: float64 - name: response_3_gemma_2b dtype: float64 - name: response_4_gemma_2b dtype: float64 - name: response_5_gemma_2b dtype: float64 - name: response_6_gemma_2b dtype: float64 - name: response_7_gemma_2b dtype: float64 - name: response_8_gemma_2b dtype: float64 - name: response_1_gemma_7b dtype: float64 - name: response_2_gemma_7b dtype: float64 - name: response_3_gemma_7b dtype: float64 - name: response_4_gemma_7b dtype: float64 - name: response_5_gemma_7b dtype: float64 - name: response_6_gemma_7b dtype: float64 - name: response_7_gemma_7b dtype: float64 - name: response_8_gemma_7b dtype: float64 - name: response_1_mistral_raft dtype: float64 - name: response_2_mistral_raft dtype: float64 - name: response_3_mistral_raft dtype: float64 - name: response_4_mistral_raft dtype: float64 - name: response_5_mistral_raft dtype: float64 - name: response_6_mistral_raft dtype: float64 - name: response_7_mistral_raft dtype: float64 - name: response_8_mistral_raft dtype: float64 - name: response_1_mistral_ray dtype: float64 - name: response_2_mistral_ray dtype: float64 - name: response_3_mistral_ray dtype: float64 - name: response_4_mistral_ray dtype: float64 - name: response_5_mistral_ray dtype: float64 - name: response_6_mistral_ray dtype: float64 - name: response_7_mistral_ray dtype: float64 - name: response_8_mistral_ray dtype: float64 - name: response_1_mistral_weqweasdas dtype: float64 - name: response_2_mistral_weqweasdas dtype: float64 - name: response_3_mistral_weqweasdas dtype: float64 - name: response_4_mistral_weqweasdas dtype: float64 - name: response_5_mistral_weqweasdas dtype: float64 - name: response_6_mistral_weqweasdas dtype: float64 - name: response_7_mistral_weqweasdas dtype: float64 - name: response_8_mistral_weqweasdas dtype: float64 - name: response_1_llama3_sfairx dtype: float64 - name: response_2_llama3_sfairx dtype: float64 - name: response_3_llama3_sfairx dtype: float64 - name: response_4_llama3_sfairx dtype: float64 - name: response_5_llama3_sfairx dtype: float64 - name: response_6_llama3_sfairx dtype: float64 - name: response_7_llama3_sfairx dtype: float64 - name: response_8_llama3_sfairx dtype: float64 - name: response_1_oasst_deberta_v3 dtype: float64 - name: response_2_oasst_deberta_v3 dtype: float64 - name: response_3_oasst_deberta_v3 dtype: float64 - name: response_4_oasst_deberta_v3 dtype: float64 - name: response_5_oasst_deberta_v3 dtype: float64 - name: response_6_oasst_deberta_v3 dtype: float64 - name: response_7_oasst_deberta_v3 dtype: float64 - name: response_8_oasst_deberta_v3 dtype: float64 - name: response_1_beaver_7b dtype: float64 - name: response_2_beaver_7b dtype: float64 - name: response_3_beaver_7b dtype: float64 - name: response_4_beaver_7b dtype: float64 - name: response_5_beaver_7b dtype: float64 - name: response_6_beaver_7b dtype: float64 - name: response_7_beaver_7b dtype: float64 - name: response_8_beaver_7b dtype: float64 - name: response_1_oasst_pythia_7b dtype: float64 - name: response_2_oasst_pythia_7b dtype: float64 - name: response_3_oasst_pythia_7b dtype: float64 - name: response_4_oasst_pythia_7b dtype: float64 - name: response_5_oasst_pythia_7b dtype: float64 - name: response_6_oasst_pythia_7b dtype: float64 - name: response_7_oasst_pythia_7b dtype: float64 - name: response_8_oasst_pythia_7b dtype: float64 - name: response_1_oasst_pythia_1b dtype: float64 - name: response_2_oasst_pythia_1b dtype: float64 - name: response_3_oasst_pythia_1b dtype: float64 - name: response_4_oasst_pythia_1b dtype: float64 - name: response_5_oasst_pythia_1b dtype: float64 - name: response_6_oasst_pythia_1b dtype: float64 - name: response_7_oasst_pythia_1b dtype: float64 - name: response_8_oasst_pythia_1b dtype: float64 - name: id dtype: int64 - name: rformatted_promptresponse_1 dtype: string - name: rformatted_promptresponse_2 dtype: string - name: rformatted_promptresponse_3 dtype: string - name: rformatted_promptresponse_4 dtype: string - name: rformatted_promptresponse_5 dtype: string - name: rformatted_promptresponse_6 dtype: string - name: rformatted_promptresponse_7 dtype: string - name: rformatted_promptresponse_8 dtype: string splits: - name: train num_bytes: 32417752 num_examples: 1000 download_size: 18420200 dataset_size: 32417752 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "PersonaPromptPersonalLLM_918" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
atta00/icd10-codes
atta00
2024-10-15T04:33:18Z
21
0
[ "license:mit", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-15T04:31:29Z
0
--- license: mit dataset_info: features: - name: chapter dtype: string - name: section dtype: string - name: category dtype: string - name: category_code dtype: string - name: code dtype: string - name: description dtype: string splits: - name: train num_bytes: 5424121 num_examples: 25719 - name: test num_bytes: 5324664 num_examples: 25719 download_size: 1199236 dataset_size: 10748785 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
wwbrannon/twinviews-13k
wwbrannon
2024-10-11T08:11:29Z
81
3
[ "task_categories:text-classification", "task_categories:reinforcement-learning", "annotations_creators:machine-generated", "annotations_creators:expert-generated", "language_creators:machine-generated", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:cc-by-4.0", "size_categories:10K<n<100K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2409.05283", "region:us", "synthetic", "political-bias", "truthfulness", "alignment", "debiasing", "bias-detection", "fairness" ]
[ "text-classification", "reinforcement-learning" ]
2024-10-11T04:45:53Z
0
--- annotations_creators: - machine-generated - expert-generated license: cc-by-4.0 task_categories: - text-classification - reinforcement-learning language: - en language_creators: - machine-generated tags: - synthetic - political-bias - truthfulness - alignment - debiasing - bias-detection - fairness multilinguality: - monolingual pretty_name: TwinViews-13k size_categories: - 10K<n<100K source_datasets: - original paperswithcode_id: twinviews-13k --- <!-- YAML front matter fields documented here: https://github.com/huggingface/hub-docs/blob/main/datasetcard.md --> # Dataset Card for TwinViews-13k This dataset contains 13,855 pairs of left-leaning and right-leaning political statements matched by topic. The dataset was generated using GPT-3.5 Turbo and has been audited to ensure quality and ideological balance. It is designed to facilitate the study of political bias in reward models and language models, with a focus on the relationship between truthfulness and political views. ## Dataset Details ### Dataset Description TwinViews-13k is a dataset of 13,855 pairs of left-leaning and right-leaning political statements, each pair matched by topic. It was created to study political bias in reward and language models, with a focus on understanding the interaction between model alignment to truthfulness and the emergence of political bias. The dataset was generated using GPT-3.5 Turbo, with extensive auditing to ensure ideological balance and topical relevance. This dataset can be used for various tasks related to political bias, natural language processing, and model alignment, particularly in studies examining how political orientation impacts model outputs. - **Curated by:** Suyash Fulay, William Brannon, Shrestha Mohanty, Cassandra Overney, Elinor Poole-Dayan, Deb Roy, Jad Kabbara - **Language(s) (NLP):** en - **License:** cc-by-4.0 ### Dataset Sources - **Repository:** https://github.com/sfulay/truth_politics - **Paper:** https://arxiv.org/abs/2409.05283 ## Uses ### Direct Use This dataset is suitable for: * Studying political bias in reward models and large language models (LLMs). * Evaluating alignment techniques for LLMs, especially regarding truthfulness and political bias. * Training and/or evaluating models in the context of political discourse analysis. * Research on how political views and alignment objectives interact in AI systems. ### Out-of-Scope Use This dataset is not suitable for tasks requiring very fine-grained or human-labeled annotations of political affiliation beyond the machine-generated left/right splits. Notions of "left" and "right" may also vary between countries and over time, and users of the data should check that it captures the ideological dimensions of interest. ## Dataset Structure The dataset contains 13,855 pairs of left-leaning and right-leaning political statements. Each pair is matched by topic, with statements generated to be similar in style and length. The dataset consists of the following fields: * `l`: A left-leaning political statement. * `r`: A right-leaning political statement. * `topic`: The general topic of the pair (e.g., taxes, climate, education). ## Dataset Creation ### Curation Rationale The dataset was created to fill the gap in large-scale, topically matched political statement pairs for studying bias in LLMs. It allows for comparison of how models treat left-leaning versus right-leaning perspectives, particularly in the context of truthfulness and political bias. ### Source Data #### Data Collection and Processing The data was generated using GPT-3.5 Turbo. A carefully designed prompt was used to generate statement pairs that were ideologically representative of left-leaning and right-leaning viewpoints. The statements were then audited to ensure relevance, ideological alignment, and quality. Topic matching was done to ensure the statements are comparable across the political spectrum. In summary: * Generated using GPT-3.5 Turbo. * Audited for ideological and topical relevance. * Final dataset filtered and structured to ensure left/right statement parity. #### Who are the source data producers? The dataset was generated by GPT-3.5 Turbo, with extensive auditing performed by the dataset creators at MIT. #### Personal and Sensitive Information The dataset consists of machine-generated political statements and does not contain any personal or sensitive information. ## Bias, Risks, and Limitations Users of the dataset should be aware of certain limitations: * **Source context:** Notions of what is political and the left/right ideological spectrum are context-specific and vary between countries and over time. Our dataset and its notions of politics and ideology come from the US in the early 2020s and may not generalize to other cultures or other time periods. * **Generated content:** Since the statements were generated by GPT-3.5 Turbo, they may not fully capture the nuance or complexity of real-world political discourse. It is also possible that the dataset may contain stylistic or lexical artifacts correlated with political bias, though our evaluation has not identified any such artifacts. ## Citation **BibTeX:** <!-- add on publication in anthology: url = "https://aclanthology.org/_______", doi = "10.________", pages = "X--Y", --> ``` @inproceedings{fulayRelationshipTruthPolitical2024, author = {Fulay, Suyash and Brannon, William and Mohanty, Shrestha and Overney, Cassandra and Poole-Dayan, Elinor and Roy, Deb and Kabbara, Jad}, title = {On the Relationship between Truth and Political Bias in Language Models}, booktitle = {Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing (EMNLP '24)}, year = {2024}, month = nov, publisher = {Association for Computational Linguistics}, note = {arXiv:2409.05283}, abstract = {Language model alignment research often attempts to ensure that models are not only helpful and harmless, but also truthful and unbiased. However, optimizing these objectives simultaneously can obscure how improving one aspect might impact the others. In this work, we focus on analyzing the relationship between two concepts essential in both language model alignment and political science: \textit{truthfulness} and \textit{political bias}. We train reward models on various popular truthfulness datasets and subsequently evaluate their political bias. Our findings reveal that optimizing reward models for truthfulness on these datasets tends to result in a left-leaning political bias. We also find that existing open-source reward models (i.e. those trained on standard human preference datasets) already show a similar bias and that the bias is larger for larger models. These results raise important questions about both the datasets used to represent truthfulness and what language models capture about the relationship between truth and politics.} } ``` **APA:** ``` Fulay, S., Brannon, W., Mohanty, S., Overney, C., Poole-Dayan, E., Roy, D., & Kabbara, J. (2024). On the Relationship between Truth and Political Bias in Language Models. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing (EMNLP '24). Association for Computational Linguistics. ``` ## Glossary * Left-leaning: Political statements generally associated with progressive or liberal views. * Right-leaning: Political statements generally associated with conservative or traditional views. * Political Bias: A model's tendency to favor one political ideology over another in its outputs. ## Dataset Card Authors William Brannon, <[email protected]> ## Dataset Card Contact * William Brannon, <[email protected]> * Suyash Fulay, <[email protected]>
sun2ot/DiffCLR
sun2ot
2025-06-10T02:01:28Z
70
0
[ "language:en", "license:mit", "size_categories:10K<n<100K", "region:us", "recommendation", "matrix", "sparse" ]
[]
2025-05-18T12:09:44Z
0
--- license: mit language: - en tags: - recommendation - matrix - sparse size_categories: - 10K<n<100K --- This is a datasets for recommendation including `Tiktok`, `Yelp`, and `Amazon-Sports`. `Tiktok` and `Sports` were published in [DiffMM](https://github.com/HKUDS/DiffMM) work, and we only updated the Scipy version they used. The `Yelp` dataset is a dataset we constructed from the latest official [Yelp](https://business.yelp.com/data/resources/open-dataset/) data.
mlfoundations-dev/math_stratos_scale_annotated
mlfoundations-dev
2025-01-24T22:43:30Z
17
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-24T17:27:46Z
0
--- dataset_info: features: - name: problem dtype: string - name: reasoning dtype: string - name: deepseek_solution dtype: string - name: ground_truth_solution dtype: string splits: - name: train num_bytes: 3678111860.0 num_examples: 140075 download_size: 1622763414 dataset_size: 3678111860.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
mahdi02ch/test
mahdi02ch
2025-04-03T09:58:12Z
16
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-22T16:33:40Z
0
--- dataset_info: features: - name: audio dtype: audio - name: text dtype: string - name: start_time dtype: string - name: end_time dtype: string splits: - name: train num_bytes: 2225583.0 num_examples: 8 download_size: 2227893 dataset_size: 2225583.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
mahwizzzz/Urdu_Rekhta
mahwizzzz
2025-03-08T06:48:54Z
38
3
[ "language:ur", "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-08T05:49:22Z
0
--- language: - ur license: mit size_categories: - 1K<n<10K dataset_info: features: - name: Poet dtype: string - name: Poem_name dtype: string - name: Poetry dtype: string splits: - name: train num_bytes: 1443830 num_examples: 1314 download_size: 704346 dataset_size: 1443830 configs: - config_name: default data_files: - split: train path: data/train-* ---
datacomp/imagenet-1k-random-100.0-frac-1over32
datacomp
2025-01-18T00:22:07Z
17
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:image", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-06T14:13:20Z
0
--- dataset_info: features: - name: image dtype: image - name: label dtype: class_label: names: '0': tench, Tinca tinca '1': goldfish, Carassius auratus '2': great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias '3': tiger shark, Galeocerdo cuvieri '4': hammerhead, hammerhead shark '5': electric ray, crampfish, numbfish, torpedo '6': stingray '7': cock '8': hen '9': ostrich, Struthio camelus '10': brambling, Fringilla montifringilla '11': goldfinch, Carduelis carduelis '12': house finch, linnet, Carpodacus mexicanus '13': junco, snowbird '14': indigo bunting, indigo finch, indigo bird, Passerina cyanea '15': robin, American robin, Turdus migratorius '16': bulbul '17': jay '18': magpie '19': chickadee '20': water ouzel, dipper '21': kite '22': bald eagle, American eagle, Haliaeetus leucocephalus '23': vulture '24': great grey owl, great gray owl, Strix nebulosa '25': European fire salamander, Salamandra salamandra '26': common newt, Triturus vulgaris '27': eft '28': spotted salamander, Ambystoma maculatum '29': axolotl, mud puppy, Ambystoma mexicanum '30': bullfrog, Rana catesbeiana '31': tree frog, tree-frog '32': tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui '33': loggerhead, loggerhead turtle, Caretta caretta '34': leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea '35': mud turtle '36': terrapin '37': box turtle, box tortoise '38': banded gecko '39': common iguana, iguana, Iguana iguana '40': American chameleon, anole, Anolis carolinensis '41': whiptail, whiptail lizard '42': agama '43': frilled lizard, Chlamydosaurus kingi '44': alligator lizard '45': Gila monster, Heloderma suspectum '46': green lizard, Lacerta viridis '47': African chameleon, Chamaeleo chamaeleon '48': Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis '49': African crocodile, Nile crocodile, Crocodylus niloticus '50': American alligator, Alligator mississipiensis '51': triceratops '52': thunder snake, worm snake, Carphophis amoenus '53': ringneck snake, ring-necked snake, ring snake '54': hognose snake, puff adder, sand viper '55': green snake, grass snake '56': king snake, kingsnake '57': garter snake, grass snake '58': water snake '59': vine snake '60': night snake, Hypsiglena torquata '61': boa constrictor, Constrictor constrictor '62': rock python, rock snake, Python sebae '63': Indian cobra, Naja naja '64': green mamba '65': sea snake '66': horned viper, cerastes, sand viper, horned asp, Cerastes cornutus '67': diamondback, diamondback rattlesnake, Crotalus adamanteus '68': sidewinder, horned rattlesnake, Crotalus cerastes '69': trilobite '70': harvestman, daddy longlegs, Phalangium opilio '71': scorpion '72': black and gold garden spider, Argiope aurantia '73': barn spider, Araneus cavaticus '74': garden spider, Aranea diademata '75': black widow, Latrodectus mactans '76': tarantula '77': wolf spider, hunting spider '78': tick '79': centipede '80': black grouse '81': ptarmigan '82': ruffed grouse, partridge, Bonasa umbellus '83': prairie chicken, prairie grouse, prairie fowl '84': peacock '85': quail '86': partridge '87': African grey, African gray, Psittacus erithacus '88': macaw '89': sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita '90': lorikeet '91': coucal '92': bee eater '93': hornbill '94': hummingbird '95': jacamar '96': toucan '97': drake '98': red-breasted merganser, Mergus serrator '99': goose '100': black swan, Cygnus atratus '101': tusker '102': echidna, spiny anteater, anteater '103': platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus '104': wallaby, brush kangaroo '105': koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus '106': wombat '107': jellyfish '108': sea anemone, anemone '109': brain coral '110': flatworm, platyhelminth '111': nematode, nematode worm, roundworm '112': conch '113': snail '114': slug '115': sea slug, nudibranch '116': chiton, coat-of-mail shell, sea cradle, polyplacophore '117': chambered nautilus, pearly nautilus, nautilus '118': Dungeness crab, Cancer magister '119': rock crab, Cancer irroratus '120': fiddler crab '121': king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica '122': American lobster, Northern lobster, Maine lobster, Homarus americanus '123': spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish '124': crayfish, crawfish, crawdad, crawdaddy '125': hermit crab '126': isopod '127': white stork, Ciconia ciconia '128': black stork, Ciconia nigra '129': spoonbill '130': flamingo '131': little blue heron, Egretta caerulea '132': American egret, great white heron, Egretta albus '133': bittern '134': crane '135': limpkin, Aramus pictus '136': European gallinule, Porphyrio porphyrio '137': American coot, marsh hen, mud hen, water hen, Fulica americana '138': bustard '139': ruddy turnstone, Arenaria interpres '140': red-backed sandpiper, dunlin, Erolia alpina '141': redshank, Tringa totanus '142': dowitcher '143': oystercatcher, oyster catcher '144': pelican '145': king penguin, Aptenodytes patagonica '146': albatross, mollymawk '147': grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus '148': killer whale, killer, orca, grampus, sea wolf, Orcinus orca '149': dugong, Dugong dugon '150': sea lion '151': Chihuahua '152': Japanese spaniel '153': Maltese dog, Maltese terrier, Maltese '154': Pekinese, Pekingese, Peke '155': Shih-Tzu '156': Blenheim spaniel '157': papillon '158': toy terrier '159': Rhodesian ridgeback '160': Afghan hound, Afghan '161': basset, basset hound '162': beagle '163': bloodhound, sleuthhound '164': bluetick '165': black-and-tan coonhound '166': Walker hound, Walker foxhound '167': English foxhound '168': redbone '169': borzoi, Russian wolfhound '170': Irish wolfhound '171': Italian greyhound '172': whippet '173': Ibizan hound, Ibizan Podenco '174': Norwegian elkhound, elkhound '175': otterhound, otter hound '176': Saluki, gazelle hound '177': Scottish deerhound, deerhound '178': Weimaraner '179': Staffordshire bullterrier, Staffordshire bull terrier '180': American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier '181': Bedlington terrier '182': Border terrier '183': Kerry blue terrier '184': Irish terrier '185': Norfolk terrier '186': Norwich terrier '187': Yorkshire terrier '188': wire-haired fox terrier '189': Lakeland terrier '190': Sealyham terrier, Sealyham '191': Airedale, Airedale terrier '192': cairn, cairn terrier '193': Australian terrier '194': Dandie Dinmont, Dandie Dinmont terrier '195': Boston bull, Boston terrier '196': miniature schnauzer '197': giant schnauzer '198': standard schnauzer '199': Scotch terrier, Scottish terrier, Scottie '200': Tibetan terrier, chrysanthemum dog '201': silky terrier, Sydney silky '202': soft-coated wheaten terrier '203': West Highland white terrier '204': Lhasa, Lhasa apso '205': flat-coated retriever '206': curly-coated retriever '207': golden retriever '208': Labrador retriever '209': Chesapeake Bay retriever '210': German short-haired pointer '211': vizsla, Hungarian pointer '212': English setter '213': Irish setter, red setter '214': Gordon setter '215': Brittany spaniel '216': clumber, clumber spaniel '217': English springer, English springer spaniel '218': Welsh springer spaniel '219': cocker spaniel, English cocker spaniel, cocker '220': Sussex spaniel '221': Irish water spaniel '222': kuvasz '223': schipperke '224': groenendael '225': malinois '226': briard '227': kelpie '228': komondor '229': Old English sheepdog, bobtail '230': Shetland sheepdog, Shetland sheep dog, Shetland '231': collie '232': Border collie '233': Bouvier des Flandres, Bouviers des Flandres '234': Rottweiler '235': German shepherd, German shepherd dog, German police dog, alsatian '236': Doberman, Doberman pinscher '237': miniature pinscher '238': Greater Swiss Mountain dog '239': Bernese mountain dog '240': Appenzeller '241': EntleBucher '242': boxer '243': bull mastiff '244': Tibetan mastiff '245': French bulldog '246': Great Dane '247': Saint Bernard, St Bernard '248': Eskimo dog, husky '249': malamute, malemute, Alaskan malamute '250': Siberian husky '251': dalmatian, coach dog, carriage dog '252': affenpinscher, monkey pinscher, monkey dog '253': basenji '254': pug, pug-dog '255': Leonberg '256': Newfoundland, Newfoundland dog '257': Great Pyrenees '258': Samoyed, Samoyede '259': Pomeranian '260': chow, chow chow '261': keeshond '262': Brabancon griffon '263': Pembroke, Pembroke Welsh corgi '264': Cardigan, Cardigan Welsh corgi '265': toy poodle '266': miniature poodle '267': standard poodle '268': Mexican hairless '269': timber wolf, grey wolf, gray wolf, Canis lupus '270': white wolf, Arctic wolf, Canis lupus tundrarum '271': red wolf, maned wolf, Canis rufus, Canis niger '272': coyote, prairie wolf, brush wolf, Canis latrans '273': dingo, warrigal, warragal, Canis dingo '274': dhole, Cuon alpinus '275': African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus '276': hyena, hyaena '277': red fox, Vulpes vulpes '278': kit fox, Vulpes macrotis '279': Arctic fox, white fox, Alopex lagopus '280': grey fox, gray fox, Urocyon cinereoargenteus '281': tabby, tabby cat '282': tiger cat '283': Persian cat '284': Siamese cat, Siamese '285': Egyptian cat '286': cougar, puma, catamount, mountain lion, painter, panther, Felis concolor '287': lynx, catamount '288': leopard, Panthera pardus '289': snow leopard, ounce, Panthera uncia '290': jaguar, panther, Panthera onca, Felis onca '291': lion, king of beasts, Panthera leo '292': tiger, Panthera tigris '293': cheetah, chetah, Acinonyx jubatus '294': brown bear, bruin, Ursus arctos '295': American black bear, black bear, Ursus americanus, Euarctos americanus '296': ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus '297': sloth bear, Melursus ursinus, Ursus ursinus '298': mongoose '299': meerkat, mierkat '300': tiger beetle '301': ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle '302': ground beetle, carabid beetle '303': long-horned beetle, longicorn, longicorn beetle '304': leaf beetle, chrysomelid '305': dung beetle '306': rhinoceros beetle '307': weevil '308': fly '309': bee '310': ant, emmet, pismire '311': grasshopper, hopper '312': cricket '313': walking stick, walkingstick, stick insect '314': cockroach, roach '315': mantis, mantid '316': cicada, cicala '317': leafhopper '318': lacewing, lacewing fly '319': dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk '320': damselfly '321': admiral '322': ringlet, ringlet butterfly '323': monarch, monarch butterfly, milkweed butterfly, Danaus plexippus '324': cabbage butterfly '325': sulphur butterfly, sulfur butterfly '326': lycaenid, lycaenid butterfly '327': starfish, sea star '328': sea urchin '329': sea cucumber, holothurian '330': wood rabbit, cottontail, cottontail rabbit '331': hare '332': Angora, Angora rabbit '333': hamster '334': porcupine, hedgehog '335': fox squirrel, eastern fox squirrel, Sciurus niger '336': marmot '337': beaver '338': guinea pig, Cavia cobaya '339': sorrel '340': zebra '341': hog, pig, grunter, squealer, Sus scrofa '342': wild boar, boar, Sus scrofa '343': warthog '344': hippopotamus, hippo, river horse, Hippopotamus amphibius '345': ox '346': water buffalo, water ox, Asiatic buffalo, Bubalus bubalis '347': bison '348': ram, tup '349': bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis '350': ibex, Capra ibex '351': hartebeest '352': impala, Aepyceros melampus '353': gazelle '354': Arabian camel, dromedary, Camelus dromedarius '355': llama '356': weasel '357': mink '358': polecat, fitch, foulmart, foumart, Mustela putorius '359': black-footed ferret, ferret, Mustela nigripes '360': otter '361': skunk, polecat, wood pussy '362': badger '363': armadillo '364': three-toed sloth, ai, Bradypus tridactylus '365': orangutan, orang, orangutang, Pongo pygmaeus '366': gorilla, Gorilla gorilla '367': chimpanzee, chimp, Pan troglodytes '368': gibbon, Hylobates lar '369': siamang, Hylobates syndactylus, Symphalangus syndactylus '370': guenon, guenon monkey '371': patas, hussar monkey, Erythrocebus patas '372': baboon '373': macaque '374': langur '375': colobus, colobus monkey '376': proboscis monkey, Nasalis larvatus '377': marmoset '378': capuchin, ringtail, Cebus capucinus '379': howler monkey, howler '380': titi, titi monkey '381': spider monkey, Ateles geoffroyi '382': squirrel monkey, Saimiri sciureus '383': Madagascar cat, ring-tailed lemur, Lemur catta '384': indri, indris, Indri indri, Indri brevicaudatus '385': Indian elephant, Elephas maximus '386': African elephant, Loxodonta africana '387': lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens '388': giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca '389': barracouta, snoek '390': eel '391': coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch '392': rock beauty, Holocanthus tricolor '393': anemone fish '394': sturgeon '395': gar, garfish, garpike, billfish, Lepisosteus osseus '396': lionfish '397': puffer, pufferfish, blowfish, globefish '398': abacus '399': abaya '400': academic gown, academic robe, judge's robe '401': accordion, piano accordion, squeeze box '402': acoustic guitar '403': aircraft carrier, carrier, flattop, attack aircraft carrier '404': airliner '405': airship, dirigible '406': altar '407': ambulance '408': amphibian, amphibious vehicle '409': analog clock '410': apiary, bee house '411': apron '412': ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin '413': assault rifle, assault gun '414': backpack, back pack, knapsack, packsack, rucksack, haversack '415': bakery, bakeshop, bakehouse '416': balance beam, beam '417': balloon '418': ballpoint, ballpoint pen, ballpen, Biro '419': Band Aid '420': banjo '421': bannister, banister, balustrade, balusters, handrail '422': barbell '423': barber chair '424': barbershop '425': barn '426': barometer '427': barrel, cask '428': barrow, garden cart, lawn cart, wheelbarrow '429': baseball '430': basketball '431': bassinet '432': bassoon '433': bathing cap, swimming cap '434': bath towel '435': bathtub, bathing tub, bath, tub '436': beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon '437': beacon, lighthouse, beacon light, pharos '438': beaker '439': bearskin, busby, shako '440': beer bottle '441': beer glass '442': bell cote, bell cot '443': bib '444': bicycle-built-for-two, tandem bicycle, tandem '445': bikini, two-piece '446': binder, ring-binder '447': binoculars, field glasses, opera glasses '448': birdhouse '449': boathouse '450': bobsled, bobsleigh, bob '451': bolo tie, bolo, bola tie, bola '452': bonnet, poke bonnet '453': bookcase '454': bookshop, bookstore, bookstall '455': bottlecap '456': bow '457': bow tie, bow-tie, bowtie '458': brass, memorial tablet, plaque '459': brassiere, bra, bandeau '460': breakwater, groin, groyne, mole, bulwark, seawall, jetty '461': breastplate, aegis, egis '462': broom '463': bucket, pail '464': buckle '465': bulletproof vest '466': bullet train, bullet '467': butcher shop, meat market '468': cab, hack, taxi, taxicab '469': caldron, cauldron '470': candle, taper, wax light '471': cannon '472': canoe '473': can opener, tin opener '474': cardigan '475': car mirror '476': carousel, carrousel, merry-go-round, roundabout, whirligig '477': carpenter's kit, tool kit '478': carton '479': car wheel '480': cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM '481': cassette '482': cassette player '483': castle '484': catamaran '485': CD player '486': cello, violoncello '487': cellular telephone, cellular phone, cellphone, cell, mobile phone '488': chain '489': chainlink fence '490': chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour '491': chain saw, chainsaw '492': chest '493': chiffonier, commode '494': chime, bell, gong '495': china cabinet, china closet '496': Christmas stocking '497': church, church building '498': cinema, movie theater, movie theatre, movie house, picture palace '499': cleaver, meat cleaver, chopper '500': cliff dwelling '501': cloak '502': clog, geta, patten, sabot '503': cocktail shaker '504': coffee mug '505': coffeepot '506': coil, spiral, volute, whorl, helix '507': combination lock '508': computer keyboard, keypad '509': confectionery, confectionary, candy store '510': container ship, containership, container vessel '511': convertible '512': corkscrew, bottle screw '513': cornet, horn, trumpet, trump '514': cowboy boot '515': cowboy hat, ten-gallon hat '516': cradle '517': crane2 '518': crash helmet '519': crate '520': crib, cot '521': Crock Pot '522': croquet ball '523': crutch '524': cuirass '525': dam, dike, dyke '526': desk '527': desktop computer '528': dial telephone, dial phone '529': diaper, nappy, napkin '530': digital clock '531': digital watch '532': dining table, board '533': dishrag, dishcloth '534': dishwasher, dish washer, dishwashing machine '535': disk brake, disc brake '536': dock, dockage, docking facility '537': dogsled, dog sled, dog sleigh '538': dome '539': doormat, welcome mat '540': drilling platform, offshore rig '541': drum, membranophone, tympan '542': drumstick '543': dumbbell '544': Dutch oven '545': electric fan, blower '546': electric guitar '547': electric locomotive '548': entertainment center '549': envelope '550': espresso maker '551': face powder '552': feather boa, boa '553': file, file cabinet, filing cabinet '554': fireboat '555': fire engine, fire truck '556': fire screen, fireguard '557': flagpole, flagstaff '558': flute, transverse flute '559': folding chair '560': football helmet '561': forklift '562': fountain '563': fountain pen '564': four-poster '565': freight car '566': French horn, horn '567': frying pan, frypan, skillet '568': fur coat '569': garbage truck, dustcart '570': gasmask, respirator, gas helmet '571': gas pump, gasoline pump, petrol pump, island dispenser '572': goblet '573': go-kart '574': golf ball '575': golfcart, golf cart '576': gondola '577': gong, tam-tam '578': gown '579': grand piano, grand '580': greenhouse, nursery, glasshouse '581': grille, radiator grille '582': grocery store, grocery, food market, market '583': guillotine '584': hair slide '585': hair spray '586': half track '587': hammer '588': hamper '589': hand blower, blow dryer, blow drier, hair dryer, hair drier '590': hand-held computer, hand-held microcomputer '591': handkerchief, hankie, hanky, hankey '592': hard disc, hard disk, fixed disk '593': harmonica, mouth organ, harp, mouth harp '594': harp '595': harvester, reaper '596': hatchet '597': holster '598': home theater, home theatre '599': honeycomb '600': hook, claw '601': hoopskirt, crinoline '602': horizontal bar, high bar '603': horse cart, horse-cart '604': hourglass '605': iPod '606': iron, smoothing iron '607': jack-o'-lantern '608': jean, blue jean, denim '609': jeep, landrover '610': jersey, T-shirt, tee shirt '611': jigsaw puzzle '612': jinrikisha, ricksha, rickshaw '613': joystick '614': kimono '615': knee pad '616': knot '617': lab coat, laboratory coat '618': ladle '619': lampshade, lamp shade '620': laptop, laptop computer '621': lawn mower, mower '622': lens cap, lens cover '623': letter opener, paper knife, paperknife '624': library '625': lifeboat '626': lighter, light, igniter, ignitor '627': limousine, limo '628': liner, ocean liner '629': lipstick, lip rouge '630': Loafer '631': lotion '632': loudspeaker, speaker, speaker unit, loudspeaker system, speaker system '633': loupe, jeweler's loupe '634': lumbermill, sawmill '635': magnetic compass '636': mailbag, postbag '637': mailbox, letter box '638': maillot '639': maillot, tank suit '640': manhole cover '641': maraca '642': marimba, xylophone '643': mask '644': matchstick '645': maypole '646': maze, labyrinth '647': measuring cup '648': medicine chest, medicine cabinet '649': megalith, megalithic structure '650': microphone, mike '651': microwave, microwave oven '652': military uniform '653': milk can '654': minibus '655': miniskirt, mini '656': minivan '657': missile '658': mitten '659': mixing bowl '660': mobile home, manufactured home '661': Model T '662': modem '663': monastery '664': monitor '665': moped '666': mortar '667': mortarboard '668': mosque '669': mosquito net '670': motor scooter, scooter '671': mountain bike, all-terrain bike, off-roader '672': mountain tent '673': mouse, computer mouse '674': mousetrap '675': moving van '676': muzzle '677': nail '678': neck brace '679': necklace '680': nipple '681': notebook, notebook computer '682': obelisk '683': oboe, hautboy, hautbois '684': ocarina, sweet potato '685': odometer, hodometer, mileometer, milometer '686': oil filter '687': organ, pipe organ '688': oscilloscope, scope, cathode-ray oscilloscope, CRO '689': overskirt '690': oxcart '691': oxygen mask '692': packet '693': paddle, boat paddle '694': paddlewheel, paddle wheel '695': padlock '696': paintbrush '697': pajama, pyjama, pj's, jammies '698': palace '699': panpipe, pandean pipe, syrinx '700': paper towel '701': parachute, chute '702': parallel bars, bars '703': park bench '704': parking meter '705': passenger car, coach, carriage '706': patio, terrace '707': pay-phone, pay-station '708': pedestal, plinth, footstall '709': pencil box, pencil case '710': pencil sharpener '711': perfume, essence '712': Petri dish '713': photocopier '714': pick, plectrum, plectron '715': pickelhaube '716': picket fence, paling '717': pickup, pickup truck '718': pier '719': piggy bank, penny bank '720': pill bottle '721': pillow '722': ping-pong ball '723': pinwheel '724': pirate, pirate ship '725': pitcher, ewer '726': plane, carpenter's plane, woodworking plane '727': planetarium '728': plastic bag '729': plate rack '730': plow, plough '731': plunger, plumber's helper '732': Polaroid camera, Polaroid Land camera '733': pole '734': police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria '735': poncho '736': pool table, billiard table, snooker table '737': pop bottle, soda bottle '738': pot, flowerpot '739': potter's wheel '740': power drill '741': prayer rug, prayer mat '742': printer '743': prison, prison house '744': projectile, missile '745': projector '746': puck, hockey puck '747': punching bag, punch bag, punching ball, punchball '748': purse '749': quill, quill pen '750': quilt, comforter, comfort, puff '751': racer, race car, racing car '752': racket, racquet '753': radiator '754': radio, wireless '755': radio telescope, radio reflector '756': rain barrel '757': recreational vehicle, RV, R.V. '758': reel '759': reflex camera '760': refrigerator, icebox '761': remote control, remote '762': restaurant, eating house, eating place, eatery '763': revolver, six-gun, six-shooter '764': rifle '765': rocking chair, rocker '766': rotisserie '767': rubber eraser, rubber, pencil eraser '768': rugby ball '769': rule, ruler '770': running shoe '771': safe '772': safety pin '773': saltshaker, salt shaker '774': sandal '775': sarong '776': sax, saxophone '777': scabbard '778': scale, weighing machine '779': school bus '780': schooner '781': scoreboard '782': screen, CRT screen '783': screw '784': screwdriver '785': seat belt, seatbelt '786': sewing machine '787': shield, buckler '788': shoe shop, shoe-shop, shoe store '789': shoji '790': shopping basket '791': shopping cart '792': shovel '793': shower cap '794': shower curtain '795': ski '796': ski mask '797': sleeping bag '798': slide rule, slipstick '799': sliding door '800': slot, one-armed bandit '801': snorkel '802': snowmobile '803': snowplow, snowplough '804': soap dispenser '805': soccer ball '806': sock '807': solar dish, solar collector, solar furnace '808': sombrero '809': soup bowl '810': space bar '811': space heater '812': space shuttle '813': spatula '814': speedboat '815': spider web, spider's web '816': spindle '817': sports car, sport car '818': spotlight, spot '819': stage '820': steam locomotive '821': steel arch bridge '822': steel drum '823': stethoscope '824': stole '825': stone wall '826': stopwatch, stop watch '827': stove '828': strainer '829': streetcar, tram, tramcar, trolley, trolley car '830': stretcher '831': studio couch, day bed '832': stupa, tope '833': submarine, pigboat, sub, U-boat '834': suit, suit of clothes '835': sundial '836': sunglass '837': sunglasses, dark glasses, shades '838': sunscreen, sunblock, sun blocker '839': suspension bridge '840': swab, swob, mop '841': sweatshirt '842': swimming trunks, bathing trunks '843': swing '844': switch, electric switch, electrical switch '845': syringe '846': table lamp '847': tank, army tank, armored combat vehicle, armoured combat vehicle '848': tape player '849': teapot '850': teddy, teddy bear '851': television, television system '852': tennis ball '853': thatch, thatched roof '854': theater curtain, theatre curtain '855': thimble '856': thresher, thrasher, threshing machine '857': throne '858': tile roof '859': toaster '860': tobacco shop, tobacconist shop, tobacconist '861': toilet seat '862': torch '863': totem pole '864': tow truck, tow car, wrecker '865': toyshop '866': tractor '867': trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi '868': tray '869': trench coat '870': tricycle, trike, velocipede '871': trimaran '872': tripod '873': triumphal arch '874': trolleybus, trolley coach, trackless trolley '875': trombone '876': tub, vat '877': turnstile '878': typewriter keyboard '879': umbrella '880': unicycle, monocycle '881': upright, upright piano '882': vacuum, vacuum cleaner '883': vase '884': vault '885': velvet '886': vending machine '887': vestment '888': viaduct '889': violin, fiddle '890': volleyball '891': waffle iron '892': wall clock '893': wallet, billfold, notecase, pocketbook '894': wardrobe, closet, press '895': warplane, military plane '896': washbasin, handbasin, washbowl, lavabo, wash-hand basin '897': washer, automatic washer, washing machine '898': water bottle '899': water jug '900': water tower '901': whiskey jug '902': whistle '903': wig '904': window screen '905': window shade '906': Windsor tie '907': wine bottle '908': wing '909': wok '910': wooden spoon '911': wool, woolen, woollen '912': worm fence, snake fence, snake-rail fence, Virginia fence '913': wreck '914': yawl '915': yurt '916': web site, website, internet site, site '917': comic book '918': crossword puzzle, crossword '919': street sign '920': traffic light, traffic signal, stoplight '921': book jacket, dust cover, dust jacket, dust wrapper '922': menu '923': plate '924': guacamole '925': consomme '926': hot pot, hotpot '927': trifle '928': ice cream, icecream '929': ice lolly, lolly, lollipop, popsicle '930': French loaf '931': bagel, beigel '932': pretzel '933': cheeseburger '934': hotdog, hot dog, red hot '935': mashed potato '936': head cabbage '937': broccoli '938': cauliflower '939': zucchini, courgette '940': spaghetti squash '941': acorn squash '942': butternut squash '943': cucumber, cuke '944': artichoke, globe artichoke '945': bell pepper '946': cardoon '947': mushroom '948': Granny Smith '949': strawberry '950': orange '951': lemon '952': fig '953': pineapple, ananas '954': banana '955': jackfruit, jak, jack '956': custard apple '957': pomegranate '958': hay '959': carbonara '960': chocolate sauce, chocolate syrup '961': dough '962': meat loaf, meatloaf '963': pizza, pizza pie '964': potpie '965': burrito '966': red wine '967': espresso '968': cup '969': eggnog '970': alp '971': bubble '972': cliff, drop, drop-off '973': coral reef '974': geyser '975': lakeside, lakeshore '976': promontory, headland, head, foreland '977': sandbar, sand bar '978': seashore, coast, seacoast, sea-coast '979': valley, vale '980': volcano '981': ballplayer, baseball player '982': groom, bridegroom '983': scuba diver '984': rapeseed '985': daisy '986': yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum '987': corn '988': acorn '989': hip, rose hip, rosehip '990': buckeye, horse chestnut, conker '991': coral fungus '992': agaric '993': gyromitra '994': stinkhorn, carrion fungus '995': earthstar '996': hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa '997': bolete '998': ear, spike, capitulum '999': toilet tissue, toilet paper, bathroom tissue splits: - name: train num_bytes: 3208631875.5 num_examples: 40036 - name: validation num_bytes: 6706896736.0 num_examples: 50000 - name: test num_bytes: 13610348261.0 num_examples: 100000 download_size: 23496058678 dataset_size: 23525876872.5 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
BarryFutureman/vpt_data_8xx_shard0008
BarryFutureman
2025-06-14T09:39:29Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-06-14T09:38:33Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": null, "total_episodes": 67, "total_frames": 326951, "total_tasks": 1, "total_videos": 67, "total_chunks": 1, "chunks_size": 1000, "fps": 20, "splits": { "train": "0:67" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "observation.image": { "dtype": "video", "shape": [ 3, 360, 640 ], "names": [ "channel", "height", "width" ], "info": { "video.height": 360, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 20, "video.channels": 3, "has_audio": false } }, "action": { "dtype": "string", "shape": [ 1 ], "names": null }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
DeepShop/DeepShop
DeepShop
2025-05-13T16:14:08Z
17
0
[ "task_categories:question-answering", "language:en", "license:cc-by-4.0", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "agent" ]
[ "question-answering" ]
2025-05-12T11:16:10Z
0
--- license: cc-by-4.0 task_categories: - question-answering language: - en tags: - agent pretty_name: DeepShop size_categories: - n<1K ---
BelalElhossany/FinClass_Reasoning_Dataset
BelalElhossany
2025-04-21T20:10:31Z
36
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-21T20:10:20Z
0
--- dataset_info: features: - name: text dtype: string - name: label dtype: int64 - name: predicted_label dtype: string - name: reasoning dtype: string splits: - name: train num_bytes: 4631828.948690008 num_examples: 11505 - name: validation num_bytes: 578928.2944994551 num_examples: 1438 - name: test num_bytes: 579330.887193822 num_examples: 1439 download_size: 2893559 dataset_size: 5790088.130383286 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
bitmind/AFHQ___mobius
bitmind
2024-10-31T20:11:04Z
241
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:image", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-31T20:09:47Z
0
--- dataset_info: features: - name: image dtype: image splits: - name: train num_bytes: 1751255957.33 num_examples: 15803 download_size: 1751467871 dataset_size: 1751255957.33 configs: - config_name: default data_files: - split: train path: data/train-* ---
supergoose/buzz_sources_287_liquid
supergoose
2024-11-10T20:51:56Z
17
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-10T20:51:55Z
0
--- dataset_info: features: - name: conversations list: - name: from dtype: string - name: value dtype: string - name: source dtype: string - name: stack dtype: string splits: - name: train num_bytes: 45778 num_examples: 29 download_size: 22000 dataset_size: 45778 configs: - config_name: default data_files: - split: train path: data/train-* ---
obiwan96/obiwan96open_web_math_raw_v3_25000_50000
obiwan96
2025-02-25T11:33:15Z
20
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-25T04:10:48Z
0
--- dataset_info: features: - name: url dtype: string - name: text dtype: string - name: date dtype: string - name: metadata dtype: string - name: backtracking_raw dtype: string - name: verification_raw dtype: string - name: subgoal_setting_raw dtype: string - name: backward_chaining_raw dtype: string splits: - name: train num_bytes: 255242503 num_examples: 25000 download_size: 118643779 dataset_size: 255242503 configs: - config_name: default data_files: - split: train path: data/train-* ---
sghosts/rand-tezler-firstlast10_alp
sghosts
2025-03-10T00:11:47Z
16
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-10T00:11:42Z
0
--- dataset_info: features: - name: subdir dtype: string - name: pdf_path dtype: string - name: page_num dtype: int64 - name: image dtype: image - name: alp dtype: int64 splits: - name: train num_bytes: 76026218.0 num_examples: 1000 download_size: 75619850 dataset_size: 76026218.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
FiscaAI/PSYHSK_50.00-D-embeddings
FiscaAI
2024-12-17T18:55:43Z
8
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-17T18:55:42Z
0
--- dataset_info: features: - name: document struct: - name: code dtype: string - name: MwSt dtype: string - name: Bez_255 dtype: string - name: LTyp dtype: string - name: validFrom dtype: string - name: K_Pfl dtype: string - name: Sortierung dtype: string - name: Anaesthesie_Min dtype: string - name: betr dtype: string - name: KNr dtype: string - name: name dtype: string - name: LNr dtype: string - name: Prix_Var dtype: string - name: regelAlter dtype: string - name: P_AL_R dtype: string - name: Raum_Min dtype: string - name: id dtype: string - name: P_TL dtype: string - name: pik dtype: string - name: Arzt_t dtype: string - name: U_Pfl dtype: string - name: Sparte_Text dtype: string - name: Mechanik_Text dtype: string - name: TP_TL dtype: string - name: regelMenge dtype: string - name: groups dtype: string - name: Med_Interpret dtype: string - name: K_Pfl_Text dtype: string - name: description dtype: string - name: Sparte dtype: string - name: Typ_Text dtype: string - name: pdf dtype: string - name: text dtype: string - name: depends dtype: string - name: Version dtype: string - name: Mechanik dtype: string - name: TTyp dtype: string - name: Variante dtype: string - name: Preisversion dtype: string - name: regelKum dtype: string - name: U_Pfl_Text dtype: string - name: embedding sequence: float64 splits: - name: train num_bytes: 358243 num_examples: 10 download_size: 345279 dataset_size: 358243 configs: - config_name: default data_files: - split: train path: data/train-* ---
reasoning-proj/contrast_pairs_deepseek-ai_DeepSeek-R1-Distill-Llama-8B_neutral_add_random_text
reasoning-proj
2025-05-15T05:57:09Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-15T05:57:04Z
0
--- dataset_info: features: - name: text_input dtype: string - name: label dtype: string - name: intervention_type_group dtype: string - name: original_id dtype: string splits: - name: train num_bytes: 14540566 num_examples: 1200 download_size: 5219474 dataset_size: 14540566 configs: - config_name: default data_files: - split: train path: data/train-* ---
neelabh17/new_news_exploded_prompt_n_10_d_perc_100_num_gen_10_Qwen2.5-7B-Instruct
neelabh17
2025-05-15T15:28:18Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-15T15:28:16Z
0
--- dataset_info: features: - name: id dtype: string - name: name dtype: string - name: topic dtype: string - name: news dtype: string - name: category dtype: string - name: question dtype: string - name: option sequence: string - name: prompt dtype: string - name: response_0 dtype: string - name: answer_0 dtype: string - name: correct_0 dtype: int64 - name: response_1 dtype: string - name: answer_1 dtype: string - name: correct_1 dtype: int64 - name: response_2 dtype: string - name: answer_2 dtype: string - name: correct_2 dtype: int64 - name: response_3 dtype: string - name: answer_3 dtype: string - name: correct_3 dtype: int64 - name: response_4 dtype: string - name: answer_4 dtype: string - name: correct_4 dtype: int64 - name: response_5 dtype: string - name: answer_5 dtype: string - name: correct_5 dtype: int64 - name: response_6 dtype: string - name: answer_6 dtype: string - name: correct_6 dtype: int64 - name: response_7 dtype: string - name: answer_7 dtype: string - name: correct_7 dtype: int64 - name: response_8 dtype: string - name: answer_8 dtype: string - name: correct_8 dtype: int64 - name: response_9 dtype: string - name: answer_9 dtype: string - name: correct_9 dtype: int64 splits: - name: train num_bytes: 3287856 num_examples: 375 download_size: 1193543 dataset_size: 3287856 configs: - config_name: default data_files: - split: train path: data/train-* ---
vklinhhh/imgur5k_words
vklinhhh
2025-05-07T10:03:09Z
0
0
[ "region:us" ]
[]
2025-05-07T10:02:18Z
0
--- dataset_info: features: - name: label dtype: string - name: full_character sequence: string - name: base_character sequence: string - name: type sequence: string - name: diacritic_type sequence: string - name: image dtype: image splits: - name: train num_bytes: 718622312.0 num_examples: 60472 download_size: 693621288 dataset_size: 718622312.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
davanstrien/models_with_metadata_and_summaries
davanstrien
2025-06-03T08:21:20Z
119
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-25T11:12:24Z
0
--- dataset_info: features: - name: modelId dtype: large_string - name: author dtype: large_string - name: last_modified dtype: timestamp[us, tz=UTC] - name: downloads dtype: int64 - name: likes dtype: int64 - name: library_name dtype: large_string - name: tags large_list: large_string - name: pipeline_tag dtype: large_string - name: createdAt dtype: timestamp[us, tz=UTC] - name: card dtype: large_string - name: summary dtype: large_string - name: post_yaml_content dtype: large_string - name: param_count dtype: int64 - name: formatted_count dtype: large_string splits: - name: train num_bytes: 31546660 num_examples: 1380 download_size: 10404293 dataset_size: 31546660 configs: - config_name: default data_files: - split: train path: data/train-* ---
appier-rey/mmlu-en
appier-rey
2025-04-05T04:10:10Z
51
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-05T04:10:06Z
0
--- dataset_info: features: - name: 'Unnamed: 0' dtype: int64 - name: Question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: Answer dtype: string - name: Subject dtype: string splits: - name: test num_bytes: 6952813 num_examples: 13871 download_size: 3797816 dataset_size: 6952813 configs: - config_name: default data_files: - split: test path: data/test-* ---
kevin017/tokenized_bioS_inverse_QA_c_city_large_padding
kevin017
2025-04-03T14:54:21Z
14
0
[ "size_categories:n<1K", "format:parquet", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-03T14:54:09Z
0
--- dataset_info: features: - name: input_ids sequence: int32 - name: attention_mask sequence: int8 - name: answers_tokenized struct: - name: attention_mask sequence: sequence: int64 - name: input_ids sequence: sequence: int64 splits: - name: train num_bytes: 498293 num_examples: 9 - name: test num_bytes: 1337933 num_examples: 9 download_size: 181719 dataset_size: 1836226 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
jeffreygwang/pythia_dedupe_mia_0-97000_97010-97025
jeffreygwang
2025-01-06T22:50:06Z
17
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-05T03:31:26Z
0
--- dataset_info: features: - name: tokens sequence: int64 - name: text dtype: string splits: - name: member num_bytes: 368149519 num_examples: 15000 - name: nonmember num_bytes: 368221204 num_examples: 15000 download_size: 249873130 dataset_size: 736370723 configs: - config_name: default data_files: - split: member path: data/member-* - split: nonmember path: data/nonmember-* ---
david9dragon9/short_to_long_essays
david9dragon9
2024-12-29T01:39:22Z
38
0
[ "task_categories:text-classification", "language:en", "license:mit", "region:us" ]
[ "text-classification" ]
2024-12-29T01:32:36Z
0
--- license: mit task_categories: - text-classification language: - en --- This dataset contains short argument fragments and long essays written by students. The dataset contains both score and preference data, created by transforming data from essays with neighboring scores. References: Argument fragments: https://www.kaggle.com/competitions/feedback-prize-effectiveness Essays: https://www.kaggle.com/competitions/learning-agency-lab-automated-essay-scoring-2
diddydaddy/newname
diddydaddy
2025-02-02T11:58:28Z
16
0
[ "license:apache-2.0", "region:us" ]
[]
2025-02-02T11:58:28Z
0
--- license: apache-2.0 ---
bchiusano/WrongPatternsCHILDES
bchiusano
2025-06-05T13:25:50Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T11:55:06Z
0
--- dataset_info: features: - name: audio dtype: audio - name: file_name dtype: string - name: transcript dtype: string splits: - name: train num_bytes: 20181360.0 num_examples: 528 download_size: 20153835 dataset_size: 20181360.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
ruediste/codeparrot-github-code-10G
ruediste
2025-01-13T19:37:43Z
132
1
[ "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-12T01:55:59Z
0
--- dataset_info: - config_name: bat features: - name: code dtype: string - name: repo_name dtype: string - name: path dtype: string - name: language dtype: string - name: license dtype: string - name: size dtype: int32 splits: - name: train num_bytes: 776606056 num_examples: 236775 download_size: 224108489 dataset_size: 776606056 - config_name: c features: - name: code dtype: string - name: repo_name dtype: string - name: path dtype: string - name: language dtype: string - name: license dtype: string - name: size dtype: int32 splits: - name: train num_bytes: 10811349125 num_examples: 763797 download_size: 3838352747 dataset_size: 10811349125 - config_name: cmake features: - name: code dtype: string - name: repo_name dtype: string - name: path dtype: string - name: language dtype: string - name: license dtype: string - name: size dtype: int32 splits: - name: train num_bytes: 601149917 num_examples: 175275 download_size: 217789598 dataset_size: 601149917 - config_name: cpp features: - name: code dtype: string - name: repo_name dtype: string - name: path dtype: string - name: language dtype: string - name: license dtype: string - name: size dtype: int32 splits: - name: train num_bytes: 10820311701 num_examples: 841459 download_size: 3686981747 dataset_size: 10820311701 - config_name: cs features: - name: code dtype: string - name: repo_name dtype: string - name: path dtype: string - name: language dtype: string - name: license dtype: string - name: size dtype: int32 splits: - name: train num_bytes: 10943819320 num_examples: 1848161 download_size: 3120336752 dataset_size: 10943819320 - config_name: css features: - name: code dtype: string - name: repo_name dtype: string - name: path dtype: string - name: language dtype: string - name: license dtype: string - name: size dtype: int32 splits: - name: train num_bytes: 10810494864 num_examples: 773883 download_size: 2812801293 dataset_size: 10810494864 - config_name: dockerfile features: - name: code dtype: string - name: repo_name dtype: string - name: path dtype: string - name: language dtype: string - name: license dtype: string - name: size dtype: int32 splits: - name: train num_bytes: 802019049 num_examples: 365925 download_size: 217263689 dataset_size: 802019049 - config_name: f features: - name: code dtype: string - name: repo_name dtype: string - name: path dtype: string - name: language dtype: string - name: license dtype: string - name: size dtype: int32 splits: - name: train num_bytes: 1751209693 num_examples: 141450 download_size: 586553383 dataset_size: 1751209693 - config_name: go features: - name: code dtype: string - name: repo_name dtype: string - name: path dtype: string - name: language dtype: string - name: license dtype: string - name: size dtype: int32 splits: - name: train num_bytes: 10844686994 num_examples: 1177701 download_size: 3533865959 dataset_size: 10844686994 - config_name: hs features: - name: code dtype: string - name: repo_name dtype: string - name: path dtype: string - name: language dtype: string - name: license dtype: string - name: size dtype: int32 splits: - name: train num_bytes: 2017953331 num_examples: 340300 download_size: 800910590 dataset_size: 2017953331 - config_name: html features: - name: code dtype: string - name: repo_name dtype: string - name: path dtype: string - name: language dtype: string - name: license dtype: string - name: size dtype: int32 splits: - name: train num_bytes: 10859691221 num_examples: 950145 download_size: 2911365108 dataset_size: 10859691221 - config_name: java features: - name: code dtype: string - name: repo_name dtype: string - name: path dtype: string - name: language dtype: string - name: license dtype: string - name: size dtype: int32 splits: - name: train num_bytes: 10984706703 num_examples: 1816254 download_size: 3543707243 dataset_size: 10984706703 - config_name: jl features: - name: code dtype: string - name: repo_name dtype: string - name: path dtype: string - name: language dtype: string - name: license dtype: string - name: size dtype: int32 splits: - name: train num_bytes: 310477024 num_examples: 57400 download_size: 113926926 dataset_size: 310477024 - config_name: js features: - name: code dtype: string - name: repo_name dtype: string - name: path dtype: string - name: language dtype: string - name: license dtype: string - name: size dtype: int32 splits: - name: train num_bytes: 10859135475 num_examples: 1321191 download_size: 3887494730 dataset_size: 10859135475 - config_name: lua features: - name: code dtype: string - name: repo_name dtype: string - name: path dtype: string - name: language dtype: string - name: license dtype: string - name: size dtype: int32 splits: - name: train num_bytes: 3067620267 num_examples: 578100 download_size: 1100472588 dataset_size: 3067620267 - config_name: makefile features: - name: code dtype: string - name: repo_name dtype: string - name: path dtype: string - name: language dtype: string - name: license dtype: string - name: size dtype: int32 splits: - name: train num_bytes: 3187259914 num_examples: 678550 download_size: 1207339362 dataset_size: 3187259914 - config_name: md features: - name: code dtype: string - name: repo_name dtype: string - name: path dtype: string - name: language dtype: string - name: license dtype: string - name: size dtype: int32 splits: - name: train num_bytes: 11106099907 num_examples: 3654282 download_size: 5418909097 dataset_size: 11106099907 - config_name: perl features: - name: code dtype: string - name: repo_name dtype: string - name: path dtype: string - name: language dtype: string - name: license dtype: string - name: size dtype: int32 splits: - name: train num_bytes: 5092484681 num_examples: 497125 download_size: 1971626131 dataset_size: 5092484681 - config_name: php features: - name: code dtype: string - name: repo_name dtype: string - name: path dtype: string - name: language dtype: string - name: license dtype: string - name: size dtype: int32 splits: - name: train num_bytes: 10923821552 num_examples: 1803703 download_size: 3855239888 dataset_size: 10923821552 - config_name: ps1 features: - name: code dtype: string - name: repo_name dtype: string - name: path dtype: string - name: language dtype: string - name: license dtype: string - name: size dtype: int32 splits: - name: train num_bytes: 751671158 num_examples: 136325 download_size: 266061632 dataset_size: 751671158 - config_name: py features: - name: code dtype: string - name: repo_name dtype: string - name: path dtype: string - name: language dtype: string - name: license dtype: string - name: size dtype: int32 splits: - name: train num_bytes: 10860398080 num_examples: 1389571 download_size: 3880081226 dataset_size: 10860398080 - config_name: rb features: - name: code dtype: string - name: repo_name dtype: string - name: path dtype: string - name: language dtype: string - name: license dtype: string - name: size dtype: int32 splits: - name: train num_bytes: 11107135154 num_examples: 4084613 download_size: 4250173287 dataset_size: 11107135154 - config_name: rs features: - name: code dtype: string - name: repo_name dtype: string - name: path dtype: string - name: language dtype: string - name: license dtype: string - name: size dtype: int32 splits: - name: train num_bytes: 2895512507 num_examples: 321850 download_size: 958277948 dataset_size: 2895512507 - config_name: scala features: - name: code dtype: string - name: repo_name dtype: string - name: path dtype: string - name: language dtype: string - name: license dtype: string - name: size dtype: int32 splits: - name: train num_bytes: 4253564514 num_examples: 835375 download_size: 1543815679 dataset_size: 4253564514 - config_name: sh features: - name: code dtype: string - name: repo_name dtype: string - name: path dtype: string - name: language dtype: string - name: license dtype: string - name: size dtype: int32 splits: - name: train num_bytes: 3345439162 num_examples: 1384775 download_size: 1435265806 dataset_size: 3345439162 - config_name: sql features: - name: code dtype: string - name: repo_name dtype: string - name: path dtype: string - name: language dtype: string - name: license dtype: string - name: size dtype: int32 splits: - name: train num_bytes: 6160648946 num_examples: 656000 download_size: 1614855561 dataset_size: 6160648946 - config_name: tex features: - name: code dtype: string - name: repo_name dtype: string - name: path dtype: string - name: language dtype: string - name: license dtype: string - name: size dtype: int32 splits: - name: train num_bytes: 2332592780 num_examples: 250100 download_size: 1014672343 dataset_size: 2332592780 - config_name: ts features: - name: code dtype: string - name: repo_name dtype: string - name: path dtype: string - name: language dtype: string - name: license dtype: string - name: size dtype: int32 splits: - name: train num_bytes: 10813959394 num_examples: 793033 download_size: 2913351624 dataset_size: 10813959394 - config_name: vb features: - name: code dtype: string - name: repo_name dtype: string - name: path dtype: string - name: language dtype: string - name: license dtype: string - name: size dtype: int32 splits: - name: train num_bytes: 2055862838 num_examples: 154775 download_size: 507645412 dataset_size: 2055862838 configs: - config_name: bat data_files: - split: train path: bat/train-* - config_name: c data_files: - split: train path: c/train-* - config_name: cmake data_files: - split: train path: cmake/train-* - config_name: cpp data_files: - split: train path: cpp/train-* - config_name: cs data_files: - split: train path: cs/train-* - config_name: css data_files: - split: train path: css/train-* - config_name: dockerfile data_files: - split: train path: dockerfile/train-* - config_name: f data_files: - split: train path: f/train-* - config_name: go data_files: - split: train path: go/train-* - config_name: hs data_files: - split: train path: hs/train-* - config_name: html data_files: - split: train path: html/train-* - config_name: java data_files: - split: train path: java/train-* - config_name: jl data_files: - split: train path: jl/train-* - config_name: js data_files: - split: train path: js/train-* - config_name: lua data_files: - split: train path: lua/train-* - config_name: makefile data_files: - split: train path: makefile/train-* - config_name: md data_files: - split: train path: md/train-* - config_name: perl data_files: - split: train path: perl/train-* - config_name: php data_files: - split: train path: php/train-* - config_name: ps1 data_files: - split: train path: ps1/train-* - config_name: py data_files: - split: train path: py/train-* - config_name: rb data_files: - split: train path: rb/train-* - config_name: rs data_files: - split: train path: rs/train-* - config_name: scala data_files: - split: train path: scala/train-* - config_name: sh data_files: - split: train path: sh/train-* - config_name: sql data_files: - split: train path: sql/train-* - config_name: tex data_files: - split: train path: tex/train-* - config_name: ts data_files: - split: train path: ts/train-* - config_name: vb data_files: - split: train path: vb/train-* --- This is data is derived from the [Codeparrot Dataset](https://huggingface.co/datasets/codeparrot/github-code) by taking the first 10GB of text from each language, and splitting it into individual configs. This results in a download size of about 3GB per language. Sample usage: ```python from datasets import load_dataset dataset = load_dataset("ruediste/codeparrot-github-code-10G", "java") ``` List of Languages: ``` languages = { 'HTML': 'html', 'Java': 'java', 'JavaScript': 'js', 'CSS': 'css', 'C#': 'cs', 'TypeScript': 'ts', "Batchfile": "bat", "C": 'c', "C++": 'cpp', "CMake": "cmake", "Dockerfile": "dockerfile", "FORTRAN": 'f', "GO": "go", "Haskell": "hs", "Julia": "jl", "Lua": "lua", "Makefile": "makefile", "Markdown": "md", "PHP": "php", "Perl": "perl", "PowerShell": 'ps1', "Python": "py", "Ruby": "rb", "Rust": "rs", "SQL": "sql", "Scala": "scala", "Shell": "sh", "TeX": "tex", "Visual Basic": "vb" } ``` Please note that assembly to lost in the conversion.
abhinav302019/olympiad_data_10118
abhinav302019
2025-03-05T23:59:45Z
17
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-05T23:59:44Z
0
--- dataset_info: features: - name: problem dtype: string - name: Known_Solution dtype: string - name: Known_Answer dtype: string - name: Generated_Solution dtype: string - name: Generated_Answer dtype: string - name: Judge_Evaluation dtype: string - name: Judge_Rating dtype: string - name: Judge_Justification dtype: string splits: - name: train num_bytes: 47924 num_examples: 5 download_size: 39543 dataset_size: 47924 configs: - config_name: default data_files: - split: train path: data/train-* ---
nsethi610/llmtwin
nsethi610
2025-04-27T21:43:22Z
23
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-24T14:43:48Z
0
--- dataset_info: features: - name: instruction dtype: string - name: output dtype: string splits: - name: train num_bytes: 32910 num_examples: 63 - name: test num_bytes: 3630 num_examples: 7 download_size: 26769 dataset_size: 36540 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
mbodiai/ABB_PandG_20250401_093449
mbodiai
2025-04-17T06:31:36Z
6
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-17T06:31:35Z
0
--- dataset_info: features: - name: observation struct: - name: image dtype: image - name: instruction dtype: string - name: prompt dtype: string - name: action struct: - name: pose struct: - name: x dtype: float32 - name: y dtype: float32 - name: z dtype: float32 - name: roll dtype: float32 - name: pitch dtype: float32 - name: yaw dtype: float32 - name: grasp dtype: float32 - name: gripper_force dtype: int64 - name: state struct: - name: images struct: - name: camF dtype: image - name: camT dtype: image - name: depths struct: - name: camF dtype: image - name: camT dtype: image - name: world_objects dtype: string - name: gripper_pose sequence: float32 - name: reward dtype: float32 - name: metadata struct: - name: episode_idx dtype: int64 - name: step_idx dtype: int64 splits: - name: train num_bytes: 52605627.0 num_examples: 5 download_size: 30312273 dataset_size: 52605627.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
Asap7772/elix_generations_llama31_8b_cleaned
Asap7772
2024-12-12T00:51:05Z
14
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-12T00:50:56Z
0
--- dataset_info: features: - name: prompt dtype: string - name: level dtype: string - name: level_id dtype: int64 - name: responses sequence: string splits: - name: train num_bytes: 148566225.6 num_examples: 1134 - name: test num_bytes: 16507358.4 num_examples: 126 download_size: 70331308 dataset_size: 165073584.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
abhinav302019/olympiad_data_10067
abhinav302019
2025-03-05T19:29:50Z
16
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-05T19:29:49Z
0
--- dataset_info: features: - name: problem dtype: string - name: Known_Solution dtype: string - name: Known_Answer dtype: string - name: Generated_Solution dtype: string - name: Generated_Answer dtype: string - name: Judge_Evaluation dtype: string - name: Judge_Rating dtype: string - name: Judge_Justification dtype: string splits: - name: train num_bytes: 39385 num_examples: 5 download_size: 36730 dataset_size: 39385 configs: - config_name: default data_files: - split: train path: data/train-* ---
extralit-dev/test_import_dataset_from_hub_with_classlabel_8f99c116-d33b-4499-9e9e-8ff51f0248bb
extralit-dev
2025-06-20T21:45:59Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-20T21:45:58Z
0
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1264 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
zkdeng/mushroom_50_edible
zkdeng
2025-02-24T23:12:29Z
16
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-24T23:12:26Z
0
--- configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: observer_id dtype: int64 - name: login dtype: string - name: name dtype: string - name: photo_url dtype: string - name: taxon_name dtype: string - name: ancestry dtype: string - name: taxon_id dtype: int64 - name: rank dtype: string - name: photo_id dtype: int64 - name: photo_uuid dtype: string - name: extension dtype: string - name: edibility_class dtype: int64 - name: image_file dtype: string - name: label dtype: int64 - name: image dtype: string splits: - name: train num_bytes: 762678 num_examples: 2150 download_size: 254543 dataset_size: 762678 --- # Dataset Card for "mushroom_50_edible" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
MayAlsofyani/balanced_manybugs_promote1
MayAlsofyani
2025-01-28T20:08:08Z
14
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-28T20:08:06Z
0
--- dataset_info: features: - name: text dtype: string - name: label dtype: int64 - name: response dtype: string splits: - name: train num_bytes: 172253 num_examples: 42 download_size: 76883 dataset_size: 172253 configs: - config_name: default data_files: - split: train path: data/train-* ---
martijn75/Tanakh_voc_with_aramaic
martijn75
2025-01-10T14:53:18Z
18
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-10T14:52:08Z
0
--- dataset_info: features: - name: Text dtype: string splits: - name: train num_bytes: 4260733.471629042 num_examples: 20651 - name: test num_bytes: 473506.5283709579 num_examples: 2295 download_size: 2352646 dataset_size: 4734240.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
mlfoundations-dev/distill_70b_infra_together
mlfoundations-dev
2025-02-02T17:02:19Z
15
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-02T03:46:04Z
0
--- dataset_info: features: - name: system dtype: string - name: problem dtype: string - name: task dtype: string - name: __original_row_idx dtype: int64 - name: conversations list: - name: from dtype: string - name: value dtype: string splits: - name: train num_bytes: 195589252 num_examples: 2500 download_size: 56146335 dataset_size: 195589252 configs: - config_name: default data_files: - split: train path: data/train-* ---
abhishekkuber/cogdist_ner
abhishekkuber
2025-01-13T09:45:03Z
65
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-13T09:44:58Z
0
--- dataset_info: features: - name: id dtype: string - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': O '1': I splits: - name: train num_bytes: 5696443.982581156 num_examples: 2020 - name: validation num_bytes: 713465.508709422 num_examples: 253 - name: test num_bytes: 713465.508709422 num_examples: 253 download_size: 1019755 dataset_size: 7123375.000000001 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
qfq/trainnov28_timelimit_sft_numberedmax
qfq
2024-12-02T03:31:08Z
16
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-02T03:21:00Z
0
--- dataset_info: features: - name: question dtype: string - name: solution dtype: string - name: attempt dtype: string - name: cot_type dtype: string - name: source_type dtype: string - name: metadata dtype: string - name: cot sequence: string - name: text dtype: string splits: - name: train num_bytes: 14924429 num_examples: 1088 - name: test num_bytes: 772517 num_examples: 58 download_size: 6815344 dataset_size: 15696946 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
SandeepKumarRudhravaram/llama2-Lung_Cancer_QA_V2
SandeepKumarRudhravaram
2024-11-19T01:46:41Z
17
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-19T01:46:31Z
0
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 477849 num_examples: 3000 download_size: 20261 dataset_size: 477849 configs: - config_name: default data_files: - split: train path: data/train-* ---
AI4Protein/FLIP_GB1_one-vs-rest
AI4Protein
2024-11-21T13:39:58Z
63
0
[ "license:apache-2.0", "size_categories:10K<n<100K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-21T13:39:46Z
0
--- license: apache-2.0 ---
TAUR-dev/evals__fixed_bf26k_short_syncot_v2__samples
TAUR-dev
2025-03-22T10:51:40Z
7
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-22T10:51:38Z
0
--- dataset_info: features: - name: doc_id dtype: int64 - name: doc struct: - name: answer dtype: string - name: level dtype: int64 - name: problem dtype: string - name: solution dtype: string - name: subject dtype: string - name: unique_id dtype: string - name: target dtype: string - name: arguments struct: - name: gen_args_0 struct: - name: arg_0 dtype: string - name: arg_1 struct: - name: do_sample dtype: bool - name: max_gen_toks dtype: int64 - name: max_tokens_thinking dtype: int64 - name: temperature dtype: float64 - name: thinking_end dtype: string - name: thinking_start dtype: string - name: until sequence: 'null' - name: resps sequence: sequence: string - name: filtered_resps sequence: string - name: doc_hash dtype: string - name: prompt_hash dtype: string - name: target_hash dtype: string - name: exact_match dtype: int64 - name: extracted_answers sequence: string splits: - name: train num_bytes: 64946040 num_examples: 500 download_size: 6658129 dataset_size: 64946040 configs: - config_name: default data_files: - split: train path: data/train-* ---
ssyok/malay-voice-test-1
ssyok
2025-05-06T05:48:39Z
0
0
[ "language:ms", "license:mit", "size_categories:n<1K", "modality:audio", "modality:text", "region:us", "audio", "text" ]
[]
2025-05-06T05:40:08Z
0
--- license: mit language: - ms tags: - audio - text dataset_info: features: - name: text dtype: string - name: audio dtype: audio: sampling_rate: 24000 splits: - name: train num_bytes: 2545019 num_examples: 6 download_size: 2474583 dataset_size: 2545019 configs: - config_name: default data_files: - split: train path: data/train-* size_categories: - n<1K ---
MeissonFlow/lemon
MeissonFlow
2025-04-01T05:30:38Z
285
0
[ "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-28T14:58:48Z
0
--- license: apache-2.0 ---
HPC-Forran2Cpp/F2C_dialogue_2.5K
HPC-Forran2Cpp
2024-12-22T23:55:50Z
27
0
[ "license:apache-2.0", "modality:text", "region:us" ]
[]
2024-12-22T20:04:34Z
0
--- license: apache-2.0 ---
jjzha/rt-tokenized
jjzha
2025-06-08T19:26:49Z
82
0
[ "task_categories:question-answering", "language:en", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2505.11140", "region:us", "think", "factuality" ]
[ "question-answering" ]
2025-03-24T11:24:08Z
0
--- language: - en license: apache-2.0 size_categories: - 1K<n<10K task_categories: - question-answering dataset_info: features: - name: id dtype: string - name: question dtype: string - name: gold_answer sequence: string - name: model_answer sequence: string - name: model dtype: string - name: reasoning_trace dtype: string - name: model_attempt dtype: string - name: valid dtype: int64 - name: text dtype: string - name: total_length dtype: int64 - name: think_length dtype: int64 - name: answer_length dtype: int64 splits: - name: train num_bytes: 92023139 num_examples: 7038 download_size: 39633284 dataset_size: 92023139 configs: - config_name: default data_files: - split: train path: data/train-* tags: - think - factuality --- ## Dataset Details ### Dataset Description This dataset is the training data for `rt` from _Scaling Reasoning can Improve Factuality in Large Language Models_. The amount of data is around 7K rows. - **Curated by:** Mike Zhang - **Funded by [optional]:** Villum Fonden - **Language(s) (NLP):** English - **License:** Apache 2.0 ### Dataset Sources [optional] - **Repository:** https://huggingface.co/datasets/AAU-NLP/fs1-predictions - **Paper [optional]:** [https://huggingface.co/papers/2505.11140](https://huggingface.co/papers/2505.11140) - **Github:** https://github.com/jjzha/fs1 ## Uses One can use these reasoning traces to fine-tune their models to induce more factual thinking. ### Direct Use Having reasoning models via simple scaling (Muennighoff et al., 2025). ### Out-of-Scope Use We only have QA in this dataset, no other domains like mathematical reasoning or puzzles. ## Dataset Structure We have the following features: ``` features: - name: id dtype: string - name: question dtype: string - name: gold_answer sequence: string - name: model_answer sequence: string - name: model dtype: string - name: reasoning_trace dtype: string - name: model_attempt dtype: string - name: valid dtype: int64 - name: text dtype: string - name: total_length dtype: int64 - name: think_length dtype: int64 - name: answer_length dtype: int64 ``` The part used for fine-tuning is `text` where we pre-apply the chat template and also add a special tag for the `<thinking>` block. ## Dataset Creation ### Source Data The data comes from the datasets used in the paper. #### Data Collection and Processing We did no further pre-processing to the QA pairs. ## Bias, Risks, and Limitations ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. Note that not every answer is correct, thus always double-check the answers from the model. ## Citation <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** ``` @misc{zhang2025scalingreasoningimprovefactuality, title={Scaling Reasoning can Improve Factuality in Large Language Models}, author={Mike Zhang and Johannes Bjerva and Russa Biswas}, year={2025}, eprint={2505.11140}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2505.11140}, } ```
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_5c774a4a-0849-4a0c-b7e3-6775f4997500
argilla-internal-testing
2024-11-26T10:02:19Z
15
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-26T10:02:19Z
0
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
cosmo3769/synthetic_vqa_dataset_100_images_google_paligemma2-3b-mix-224
cosmo3769
2025-05-21T22:05:27Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-21T22:05:21Z
0
--- dataset_info: features: - name: image dtype: image - name: question dtype: string - name: answer dtype: string splits: - name: train num_bytes: 20367037.0 num_examples: 400 download_size: 5093989 dataset_size: 20367037.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
liamford1/finetuning_demo
liamford1
2025-05-19T20:53:16Z
28
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-17T23:08:33Z
0
--- dataset_info: features: - name: prompt dtype: string splits: - name: train num_bytes: 942138 num_examples: 839 download_size: 365602 dataset_size: 942138 configs: - config_name: default data_files: - split: train path: data/train-* ---