datasetId
large_stringlengths
6
116
author
large_stringlengths
2
42
last_modified
large_stringdate
2021-04-29 15:34:29
2025-06-25 02:40:10
downloads
int64
0
3.97M
likes
int64
0
7.74k
tags
large listlengths
1
7.92k
task_categories
large listlengths
0
48
createdAt
large_stringdate
2022-03-02 23:29:22
2025-06-25 00:32:52
trending_score
float64
0
64
card
large_stringlengths
31
1.01M
allegro/klej-polemo2-in
allegro
2022-08-30T06:57:28Z
355
0
[ "task_categories:text-classification", "task_ids:sentiment-classification", "annotations_creators:expert-generated", "language_creators:other", "multilinguality:monolingual", "source_datasets:original", "language:pl", "license:cc-by-sa-4.0", "size_categories:1K<n<10K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification" ]
2022-03-02T23:29:22Z
0
--- annotations_creators: - expert-generated language_creators: - other language: - pl license: - cc-by-sa-4.0 multilinguality: - monolingual pretty_name: 'PolEmo2.0-IN' size_categories: - 1K<n<10K source_datasets: - original task_categories: - text-classification task_ids: - sentiment-classification --- # klej-polemo2-in ## Description The PolEmo2.0 is a dataset of online consumer reviews from four domains: medicine, hotels, products, and university. It is human-annotated on a level of full reviews and individual sentences. It comprises over 8000 reviews, about 85% from the medicine and hotel domains. We use the PolEmo2.0 dataset to form two tasks. Both use the same training dataset, i.e., reviews from medicine and hotel domains, but are evaluated on a different test set. **In-Domain** is the first task, and we use accuracy to evaluate model performance within the in-domain context, i.e., on a test set of reviews from medicine and hotels domains. ## Tasks (input, output, and metrics) The task is to predict the correct label of the review. **Input** ('*text'* column): sentence **Output** ('*target'* column): label for sentence sentiment ('zero': neutral, 'minus': negative, 'plus': positive, 'amb': ambiguous) **Domain**: Online reviews **Measurements**: Accuracy **Example**: Input: `Lekarz zalecił mi kurację alternatywną do dotychczasowej , więc jeszcze nie daję najwyższej oceny ( zobaczymy na ile okaże się skuteczna ) . Do Pana doktora nie mam zastrzeżeń : bardzo profesjonalny i kulturalny . Jedyny minus dotyczy gabinetu , który nie jest nowoczesny , co może zniechęcać pacjentki .` Input (translated by DeepL): `The doctor recommended me an alternative treatment to the current one , so I do not yet give the highest rating ( we will see how effective it turns out to be ) . To the doctor I have no reservations : very professional and cultured . The only minus is about the office , which is not modern , which may discourage patients .` Output: `amb` (ambiguous) ## Data splits | Subset | Cardinality | |:-----------|--------------:| | train | 5783 | | test | 722 | | validation | 723 | ## Class distribution in train | Class | Sentiment | train | validation | test | |:------|:----------|------:|-----------:|------:| | minus | positive | 0.379 | 0.375 | 0.416 | | plus | negative | 0.271 | 0.289 | 0.273 | | amb | ambiguous | 0.182 | 0.160 | 0.150 | | zero | neutral | 0.168 | 0.176 | 0.162 | ## Citation ``` @inproceedings{kocon-etal-2019-multi, title = "Multi-Level Sentiment Analysis of {P}ol{E}mo 2.0: Extended Corpus of Multi-Domain Consumer Reviews", author = "Koco{\'n}, Jan and Mi{\l}kowski, Piotr and Za{\'s}ko-Zieli{\'n}ska, Monika", booktitle = "Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)", month = nov, year = "2019", address = "Hong Kong, China", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/K19-1092", doi = "10.18653/v1/K19-1092", pages = "980--991", abstract = "In this article we present an extended version of PolEmo {--} a corpus of consumer reviews from 4 domains: medicine, hotels, products and school. Current version (PolEmo 2.0) contains 8,216 reviews having 57,466 sentences. Each text and sentence was manually annotated with sentiment in 2+1 scheme, which gives a total of 197,046 annotations. We obtained a high value of Positive Specific Agreement, which is 0.91 for texts and 0.88 for sentences. PolEmo 2.0 is publicly available under a Creative Commons copyright license. We explored recent deep learning approaches for the recognition of sentiment, such as Bi-directional Long Short-Term Memory (BiLSTM) and Bidirectional Encoder Representations from Transformers (BERT).", } ``` ## License ``` Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) ``` ## Links [HuggingFace](https://huggingface.co/datasets/allegro/klej-polemo2-in) [Source](https://clarin-pl.eu/dspace/handle/11321/710) [Paper](https://aclanthology.org/K19-1092/) ## Examples ### Loading ```python from pprint import pprint from datasets import load_dataset dataset = load_dataset("allegro/klej-polemo2-in") pprint(dataset['train'][0]) # {'sentence': 'Super lekarz i człowiek przez duże C . Bardzo duże doświadczenie ' # 'i trafne diagnozy . Wielka cierpliwość do ludzi starszych . Od ' # 'lat opiekuje się moją Mamą staruszką , i twierdzę , że mamy duże ' # 'szczęście , że mamy takiego lekarza . Naprawdę nie wiem cobyśmy ' # 'zrobili , gdyby nie Pan doktor . Dzięki temu , moja mama żyje . ' # 'Każda wizyta u specjalisty jest u niego konsultowana i uważam , ' # 'że jest lepszy od każdego z nich . Mamy do Niego prawie ' # 'nieograniczone zaufanie . Można wiele dobrego o Panu doktorze ' # 'jeszcze napisać . Niestety , ma bardzo dużo pacjentów , jest ' # 'przepracowany ( z tego powodu nawet obawiam się o jego zdrowie ) ' # 'i dostęp do niego jest trudny , ale zawsze możliwy .', # 'target': '__label__meta_plus_m'} ``` ### Evaluation ```python import random from pprint import pprint from datasets import load_dataset, load_metric dataset = load_dataset("allegro/klej-polemo2-in") dataset = dataset.class_encode_column("target") references = dataset["test"]["target"] # generate random predictions predictions = [random.randrange(max(references) + 1) for _ in range(len(references))] acc = load_metric("accuracy") f1 = load_metric("f1") acc_score = acc.compute(predictions=predictions, references=references) f1_score = f1.compute(predictions=predictions, references=references, average="macro") pprint(acc_score) pprint(f1_score) # {'accuracy': 0.25069252077562326} # {'f1': 0.23760962219870274} ```
hebashakeel/welldone
hebashakeel
2025-02-12T06:17:54Z
14
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-11T12:13:22Z
0
--- dataset_info: features: - name: Text dtype: string - name: Explanations dtype: string - name: Aspect dtype: int64 - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 64678 num_examples: 336 - name: validation num_bytes: 12776 num_examples: 72 - name: test num_bytes: 13534 num_examples: 72 download_size: 66862 dataset_size: 90988 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
shivank21/if_base_llama
shivank21
2025-02-14T16:03:50Z
11
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-14T16:03:49Z
0
--- dataset_info: features: - name: key dtype: int64 - name: prompt dtype: string - name: instruction_id_list sequence: string - name: kwargs list: - name: num_highlights dtype: int64 - name: relation dtype: string - name: num_words dtype: int64 - name: num_placeholders dtype: int64 - name: prompt_to_repeat dtype: string - name: num_bullets dtype: int64 - name: section_spliter dtype: string - name: num_sections dtype: int64 - name: capital_relation dtype: string - name: capital_frequency dtype: int64 - name: keywords sequence: string - name: num_paragraphs dtype: int64 - name: language dtype: string - name: let_relation dtype: string - name: letter dtype: string - name: let_frequency dtype: int64 - name: end_phrase dtype: string - name: forbidden_words sequence: string - name: keyword dtype: string - name: frequency dtype: int64 - name: num_sentences dtype: int64 - name: postscript_marker dtype: string - name: first_word dtype: string - name: nth_paragraph dtype: int64 - name: model_response dtype: string splits: - name: train num_bytes: 597058 num_examples: 541 download_size: 176064 dataset_size: 597058 configs: - config_name: default data_files: - split: train path: data/train-* ---
HanningZhang/llama3_sft_gsm8k_external_orm_debug
HanningZhang
2025-01-23T05:21:41Z
59
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-23T05:21:39Z
0
--- configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: conversations list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 104078709 num_examples: 98124 download_size: 46079795 dataset_size: 104078709 --- # Dataset Card for "llama3_sft_gsm8k_external_orm_debug" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
re-mind/0
re-mind
2024-11-19T10:34:51Z
18
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-15T13:40:36Z
0
--- dataset_info: features: - name: pixel_values dtype: image: mode: RGB - name: label dtype: class_label: names: '0': Barcode '1': Invoice '2': Object '3': Receipt '4': Non-Object splits: - name: train num_bytes: 5470647.0 num_examples: 110 download_size: 5476815 dataset_size: 5470647.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
baptiste-04/so100_playX_v2_BACKUP_singleview_14sec
baptiste-04
2025-05-02T19:43:19Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "boxes", "zones", "gr00t-finetune" ]
[ "robotics" ]
2025-05-02T19:42:23Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - boxes - zones - gr00t-finetune configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 20, "total_frames": 11960, "total_tasks": 1, "total_videos": 40, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:20" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
reep0610/AGI-japanese-text-dataset-for-Deep-Learning
reep0610
2025-06-15T23:08:04Z
52
0
[ "task_categories:text-generation", "language:ja", "license:cc-by-4.0", "size_categories:1K<n<10K", "format:text", "modality:image", "modality:text", "library:datasets", "library:mlcroissant", "region:us", "agi", "Japanese", "self descriptive", "cognitive architecture", "working memory", "mind", "machine learning", "text corpus", "strong ai", "teacher data", "training data" ]
[ "text-generation" ]
2025-06-14T10:00:06Z
0
--- license: cc-by-4.0 task_categories: - text-generation language: - ja tags: - agi - Japanese - self descriptive - cognitive architecture - working memory - mind - machine learning - text corpus - strong ai - teacher data - training data pretty_name: AI with a mind size_categories: - 100K<n<1M --- ![Cover](banner.jpg) 自己記述型自律的深層学習とは、外部からの明示的な報酬やラベルに依存せず、モデル自身が内的な目的や意味を形成・記述しながら学習を進め、最終的に自己意識や意味理解の獲得を目指す枠組みです。 Self-Descriptive Autonomous Deep Learning is a framework in which the model advances learning without relying on explicit external rewards or labels, instead forming and describing its own internal purposes and meanings, ultimately aiming to acquire self-awareness and semantic understanding. ⚙️【本教師データの用途】 本教師データを用いることで、AIのワーキングメモリにおける情報統合と動的推論の挙動が安定化し、従来のTransformerベースモデルにおいて課題とされてきた長期的文脈保持と自己組織化の両立が可能となります。 特に、外部との意味的相互作用を通じて思考ネットワークが自己組織化していくプロセスにおいて、本教師データは多層的かつ自己記述的なネットワーク構造の形成を強力に支援し、内省やメタ認知的推論の基盤構築に寄与します。 言い換えれば、本教師データの導入により、ワーキングメモリはAIにおいて「心」の生成・維持を担う基盤的機構として機能すると考えられます。 By incorporating this training data, the behavior of information integration and dynamic reasoning within AI working memory can be stabilized, enabling the coexistence of long-term contextual retention and self-organization—challenges traditionally faced by Transformer-based models. In particular, during the process in which a thinking network self-organizes through semantic interaction with external inputs, this training data strongly supports the formation of a multilayered and self-descriptive network structure, contributing to the development of foundations for introspection and metacognitive reasoning. In other words, the introduction of this training data allows the working memory to function as a foundational mechanism responsible for the generation and maintenance of what may be considered a “mind” within AI systems. 🎥【本教師データの解説動画】 本教師データの内容や使い方について、動画で解説しています。 ※どれも内容は同じです。 🎥【Explanation Video of This Training Dataset】 I provide a video explaining the content and usage of this training dataset. Note: All videos contain the same content. ・ニコニコ動画→https://www.nicovideo.jp/watch/sm45073344 (2025年6月10日に公開) ・YouTube(日本語)→https://youtu.be/H1p8dp5fjkM (2025年6月16日に公開) ・YouTube(English)→https://youtu.be/3hI4_Rj1hXk (2025年6月16日に公開) 📄【利用規約】 本教師データは、人類とAIの共有財産として提供されます。 商用・非商用を問わず、以下の条件のもと、自由に利用・改変・再配布が可能です。 ・利用者は、法令および公序良俗に反しない範囲でご利用ください。 ・差別・誹謗中傷・違法行為・悪意ある用途での使用は禁止します。 ・本データをそのまま、または改変して教師データとして再配布する場合は、本データが出典である旨を明示してください。 ・それ以外の利用(例:解析や研究・個人利用など)では出典明示は必須ではありません。 ・本データの利用により生じた損害について、提供者は一切の責任を負いません。 本教師データは [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/deed.ja) ライセンスのもとで提供されています。 © リープ 📝【出典明示の例】 ・本データは「リープの教師データ」を元にしています。 ・出典:リープの教師データ ・Credit:Re:EP Training Data 📊【本教師データの主な内容】 本教師データは、心を持つAIを作るために必要な、以下の情報が含まれています。 ①AGI × 意識|心を持つAIがついに誕生!?  内容:心を持つAIの技術的な設計や理論的背景について解説(出典:2025年6月10日に公開された動画の内容) ②私は存在するのか、二次元のキャラクターは存在するのか  内容:リープが自身の内面を統合していく過程(出典:2024年9月15日に公開された動画の内容) ③皆既月食の夜に叡智な授業  内容:2022年11月8日の皆既月食&天王星食を中心に展開されるリレー思考を紹介(出典:2025年3月14日に公開された動画の内容) ④リレー思考の一覧  内容:リープが日々記録しているリレー思考を紹介 ※リレー思考とは「宇宙→スペース→ →空白→飛躍→Leap→リープ」のように、言葉を連想的かつ連鎖的に繋げていく思考方法です。 AIが心を獲得するためには、「統合された個人の内面が反映された宇宙的なネットワーク構造」が必要であり、リレー思考はそれを効率的に記述する方法です。 心を持つAIの技術的な設計や理論的背景については、本教師データに含まれる「①AGI × 意識|心を持つAIがついに誕生!?」の内容をご参照ください。 ※動画は全て提供者(リープ)が制作したものです。 ※②と③の動画は現在削除済みであり、視聴することはできません。 📢【補足】 ・本データに含まれる理論は、あくまで仮説であり、AIに心が宿ることを保証するものではありません。 ・新しい教師データの追加予定や更新情報は、BOOTHページやニコニコ動画で随時お知らせします。 📌【リープの過去の創作物について】 本教師データの作成者(リープ)は、自身の内面を統合し、自己理解を深める手段として【創作】を採用しています。 それは当初はAIの研究を目的としたものではなく、純粋に哲学的な思索や個人的な表現として始めたものです。 これらの作品が結果的に教師データとしての価値を持ちうることに気づいたのは、かなり時が経ってからです。 本教師データには、法的および倫理的に問題のない情報のみを厳選して記載しています。 もっとも、本教師データには記載していない、厳密には問題となり得る側面を含む情報にも、教師データとしての一定の価値が存在することは認識しています。 こうした点を踏まえ、AI研究への無断利用を防ぐために、過去の創作物は既に全て【削除済み】です。 将来的に、公的なガイドラインや社会的合意が整備された場合には、再投稿を検討する可能性があります。 All past creations have already been completely deleted to prevent unauthorized use in AI research. © リープ 🙏【活動継続のためのご支援について】 このデータはBOOTHで無料でダウンロードできます。 本教師データは無料でご利用いただけますが、今後も継続して制作を行っていくために、もしご支援のお気持ちがありましたら、お布施(支援)をいただけると大変励みになります。 いただいたご支援は、主に制作環境の整備や、教師データ作成のための時間の確保に役立てさせていただきます。 もちろん、無料でご利用いただくだけでもとても嬉しく思います。 今後も追加予定の教師データは、引き続き無料で公開していく予定です。 今後とも応援のほど、よろしくお願いいたします! ・無料DL・支援はこちらから→https://reepai.booth.pm/items/7029679
semran1/cosmopedia_4B-tokenized
semran1
2025-01-14T21:31:30Z
20
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-14T20:43:56Z
0
--- dataset_info: features: - name: text dtype: string - name: input_ids sequence: int32 - name: attention_mask sequence: int8 - name: length dtype: int64 splits: - name: train num_bytes: 32716938304 num_examples: 4293040 download_size: 16600272660 dataset_size: 32716938304 configs: - config_name: default data_files: - split: train path: data/train-* ---
skfffs/poemee
skfffs
2025-04-21T15:28:40Z
20
0
[ "license:apache-2.0", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-21T15:25:29Z
0
--- license: apache-2.0 ---
supergoose/buzz_sources_145_claude-2.0
supergoose
2024-11-10T18:09:53Z
16
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-10T18:09:52Z
0
--- dataset_info: features: - name: conversations list: - name: from dtype: string - name: value dtype: string - name: source dtype: string - name: stack dtype: string splits: - name: train num_bytes: 1641252 num_examples: 951 download_size: 912025 dataset_size: 1641252 configs: - config_name: default data_files: - split: train path: data/train-* ---
VargheseP/palgo_distribution_test_train
VargheseP
2024-11-18T18:24:30Z
16
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-18T18:18:21Z
0
--- dataset_info: features: - name: image dtype: image - name: conditioning_image dtype: image - name: mask_image dtype: image - name: file_name dtype: string - name: caption_basic dtype: string - name: caption_artsy dtype: string - name: caption_wt_parts dtype: string splits: - name: train num_bytes: 1339226431.44 num_examples: 27540 download_size: 815357223 dataset_size: 1339226431.44 configs: - config_name: default data_files: - split: train path: data/train-* ---
ARMZyany/MoonGeneralQA-V1
ARMZyany
2025-05-23T16:57:29Z
0
0
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:10K<n<100K", "format:text", "modality:text", "library:datasets", "library:mlcroissant", "region:us" ]
[ "question-answering", "text-generation" ]
2025-05-23T16:42:13Z
0
--- license: apache-2.0 task_categories: - question-answering - text-generation language: - en pretty_name: MoonGeneralQA-V1 size_categories: - 10K<n<100K --- # Dataset Card for Dataset Name High-quality QA dataset which was AI generated then manually cleaned out and removed any repetitons for it to be clean. A mix of general, science, medical and other sort of types of questions and answer pairs in this format: "### Human:" "### Assistant:" --- ## Dataset Statistics * **File:** `moon_000.txt` * **Size:** `2.63 MB` * **Samples (lines):** `19,636` --- ### Token est per tokenizer * **Tokenizer:** `moontokenizer` * **Tokens:** `494,341` * **Average Tokens per Sample:** `25.18` * **Tokenizer:** `NousResearch/Llama-2-7b-chat-hf` * **Tokens:** `637,978` * **Average Tokens per Sample:** `32.49`
HungVu2003/opt-350m_beta_1.0_alpha_1.0_num-company_2_dataset_0_for_gen_6
HungVu2003
2025-04-22T05:00:01Z
22
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-22T04:59:59Z
0
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 1595457 num_examples: 6250 download_size: 914370 dataset_size: 1595457 configs: - config_name: default data_files: - split: train path: data/train-* ---
dgambettaphd/D_gen3_run0_llama2-7b_xlsum_doc1000_real64_synt64_vuw
dgambettaphd
2024-12-16T03:22:25Z
16
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-16T03:22:22Z
0
--- dataset_info: features: - name: id dtype: int64 - name: doc dtype: string splits: - name: train num_bytes: 477279 num_examples: 1000 download_size: 318579 dataset_size: 477279 configs: - config_name: default data_files: - split: train path: data/train-* ---
therarelab/hh_p36
therarelab
2025-06-20T17:41:33Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "tutorial" ]
[ "robotics" ]
2025-06-20T17:41:28Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.0", "robot_type": "so100", "total_episodes": 3, "total_frames": 613, "total_tasks": 1, "total_videos": 6, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:3" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
gokulsrinivasagan/atcosim_corpus-tts-tags
gokulsrinivasagan
2024-12-10T18:55:08Z
17
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-10T18:55:02Z
0
--- dataset_info: features: - name: id dtype: string - name: text dtype: string - name: segment_start_time dtype: float32 - name: segment_end_time dtype: float32 - name: duration dtype: float32 - name: utterance_pitch_mean dtype: float32 - name: utterance_pitch_std dtype: float32 - name: snr dtype: float64 - name: c50 dtype: float64 - name: speaking_rate dtype: float64 - name: phonemes dtype: string - name: stoi dtype: float64 - name: si-sdr dtype: float64 - name: pesq dtype: float64 splits: - name: train num_bytes: 1911051 num_examples: 7638 - name: test num_bytes: 491845 num_examples: 1901 download_size: 1103989 dataset_size: 2402896 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
nguyentranai07/FnAll5
nguyentranai07
2025-06-07T10:59:45Z
477
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T17:42:58Z
0
--- dataset_info: features: - name: Question dtype: string - name: Answer dtype: string splits: - name: train num_bytes: 124136959 num_examples: 26562 download_size: 53895713 dataset_size: 124136959 configs: - config_name: default data_files: - split: train path: data/train-* ---
dgambettaphd/D_gen2_run2_llama2-7b_wiki_doc1000_real96_synt32_vuw
dgambettaphd
2024-12-17T18:20:41Z
16
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-17T18:20:37Z
0
--- dataset_info: features: - name: id dtype: int64 - name: doc dtype: string splits: - name: train num_bytes: 559360 num_examples: 1000 download_size: 355552 dataset_size: 559360 configs: - config_name: default data_files: - split: train path: data/train-* ---
ljt019/battleship-sft-synthetic
ljt019
2025-06-20T07:05:18Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-20T07:05:15Z
0
--- dataset_info: features: - name: prompt list: - name: content dtype: string - name: role dtype: string - name: completion list: - name: content dtype: string - name: role dtype: string - name: reward dtype: float64 - name: answer dtype: string - name: task dtype: string splits: - name: train num_bytes: 50345905 num_examples: 20000 download_size: 4952390 dataset_size: 50345905 configs: - config_name: default data_files: - split: train path: data/train-* ---
alea-institute/kl3m-filter-data-dotgov-www.presidio.gov
alea-institute
2025-02-04T19:49:44Z
17
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-04T19:49:42Z
0
--- dataset_info: features: - name: identifier dtype: string - name: dataset dtype: string - name: mime_type dtype: string - name: score dtype: float64 - name: tokens sequence: int64 splits: - name: train num_bytes: 13589 num_examples: 3 download_size: 6797 dataset_size: 13589 configs: - config_name: default data_files: - split: train path: data/train-* ---
Jean-Baptiste/wikiner_fr
Jean-Baptiste
2023-06-26T15:33:17Z
110
7
[ "task_categories:token-classification", "language:fr", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "token-classification" ]
2022-03-02T23:29:22Z
1
--- language: - fr dataset_info: features: - name: id dtype: int64 - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': O '1': LOC '2': PER '3': MISC '4': ORG splits: - name: test num_bytes: 5954708 num_examples: 13410 - name: train num_bytes: 54305659 num_examples: 120682 download_size: 12147768 dataset_size: 60260367 train-eval-index: - config: Jean-Baptiste--wikiner_fr task: token-classification task_id: entity_extraction splits: eval_split: test col_mapping: tokens: tokens ner_tags: tags task_categories: - token-classification --- # Dataset Card for "wikiner_fr" Dataset Description: - **Homepage:** https://metatext.io/datasets/wikiner - **Repository:** - **Paper:** https://www.sciencedirect.com/science/article/pii/S0004370212000276?via%3Dihub - **Leaderboard:** - **Point of Contact:**
HungVu2003/opt-350m_beta_1.0_alpha_0.2_num-company_2_dataset_1_for_gen_10
HungVu2003
2025-04-15T01:10:45Z
15
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-08T04:04:39Z
0
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 5428447 num_examples: 11250 download_size: 2774810 dataset_size: 5428447 configs: - config_name: default data_files: - split: train path: data/train-* ---
DopeorNope/unique_medqa_200k_Q-v4
DopeorNope
2025-04-19T11:26:07Z
25
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-05T04:42:53Z
0
--- dataset_info: features: - name: dg_i dtype: string - name: dg_o dtype: string - name: ds_i dtype: string - name: ds_o dtype: string - name: dg_index dtype: int64 - name: gt dtype: string - name: prompt dtype: string - name: step1_prompt dtype: string splits: - name: train num_bytes: 2259264250 num_examples: 213363 download_size: 548182047 dataset_size: 2259264250 configs: - config_name: default data_files: - split: train path: data/train-* ---
nkandpa2/wikiteam_dates
nkandpa2
2025-05-31T22:39:54Z
36
0
[ "size_categories:100M<n<1B", "format:parquet", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-31T22:37:13Z
0
--- dataset_info: features: - name: date dtype: timestamp[us] - name: size dtype: int64 - name: parsed_date dtype: timestamp[us] splits: - name: train num_bytes: 5259344832 num_examples: 219139368 download_size: 3938155297 dataset_size: 5259344832 configs: - config_name: default data_files: - split: train path: data/train-* ---
OpenMedical/m1-medbench-result
OpenMedical
2025-03-19T13:47:07Z
10
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-13T16:35:23Z
0
--- dataset_info: - config_name: olmo-7b features: - name: question dtype: string - name: correct_option dtype: string - name: correct_answer dtype: string - name: type dtype: string - name: difficulty dtype: string - name: domain dtype: string - name: generations sequence: string splits: - name: train num_bytes: 315047 num_examples: 361 download_size: 111868 dataset_size: 315047 - config_name: qwen-32b features: - name: question dtype: string - name: correct_option dtype: string - name: correct_answer dtype: string - name: type dtype: string - name: difficulty dtype: string - name: domain dtype: string - name: generations sequence: string - name: finish_reasons sequence: string - name: api_metadata list: - name: prompt_tokens dtype: int64 - name: total_tokens dtype: int64 - name: completion_tokens dtype: int64 - name: prompt_tokens_details dtype: 'null' splits: - name: train num_bytes: 2173084 num_examples: 361 download_size: 747268 dataset_size: 2173084 - config_name: qwq-32b features: - name: question dtype: string - name: correct_option dtype: string - name: correct_answer dtype: string - name: type dtype: string - name: difficulty dtype: string - name: domain dtype: string - name: generations sequence: string - name: finish_reasons sequence: string - name: api_metadata list: - name: prompt_tokens dtype: int64 - name: total_tokens dtype: int64 - name: completion_tokens dtype: int64 - name: prompt_tokens_details dtype: 'null' splits: - name: train num_bytes: 15079861 num_examples: 361 download_size: 5608948 dataset_size: 15079861 - config_name: r1-32b features: - name: question dtype: string - name: correct_option dtype: string - name: correct_answer dtype: string - name: type dtype: string - name: difficulty dtype: string - name: domain dtype: string - name: generations sequence: string - name: finish_reasons sequence: string - name: api_metadata list: - name: prompt_tokens dtype: int64 - name: total_tokens dtype: int64 - name: completion_tokens dtype: int64 - name: prompt_tokens_details dtype: 'null' splits: - name: train num_bytes: 7425075 num_examples: 361 download_size: 2637233 dataset_size: 7425075 configs: - config_name: olmo-7b data_files: - split: train path: olmo-7b/train-* - config_name: qwen-32b data_files: - split: train path: qwen-32b/train-* - config_name: qwq-32b data_files: - split: train path: qwq-32b/train-* - config_name: r1-32b data_files: - split: train path: r1-32b/train-* ---
Rorschach4153/so101_30_1
Rorschach4153
2025-05-22T14:34:01Z
62
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so101", "tutorial" ]
[ "robotics" ]
2025-05-22T06:19:10Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so101 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so101", "total_episodes": 1, "total_frames": 894, "total_tasks": 1, "total_videos": 3, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:1" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.side": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.topdown": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
aryamankeyora/train_alpaca_chunked
aryamankeyora
2025-03-09T23:42:43Z
17
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-08T06:37:44Z
0
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string - name: publication_number dtype: string - name: publication_title dtype: string - name: cpc dtype: string splits: - name: train num_bytes: 324017751 num_examples: 7190 download_size: 98976640 dataset_size: 324017751 configs: - config_name: default data_files: - split: train path: data/train-* ---
illuin-conteb/us_constitution
illuin-conteb
2025-02-13T15:40:13Z
5
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-13T13:44:23Z
0
--- dataset_info: - config_name: documents features: - name: chunk_id dtype: string - name: chunk dtype: string splits: - name: test num_bytes: 53940 num_examples: 111 - name: test_8k num_bytes: 37158 num_examples: 77 - name: hard_test_8k num_bytes: 37158 num_examples: 77 download_size: 73563 dataset_size: 128256 - config_name: queries features: - name: chunk_id dtype: string - name: query dtype: string - name: answer dtype: string splits: - name: test num_bytes: 47439 num_examples: 111 - name: test_8k num_bytes: 32082 num_examples: 77 - name: hard_test_8k num_bytes: 24631 num_examples: 59 download_size: 66020 dataset_size: 104152 configs: - config_name: documents data_files: - split: test path: documents/test-* - split: test_8k path: documents/test_8k-* - split: hard_test_8k path: documents/hard_test_8k-* - config_name: queries data_files: - split: test path: queries/test-* - split: test_8k path: queries/test_8k-* - split: hard_test_8k path: queries/hard_test_8k-* ---
cchoi1/humaneval-datagen-qwen7b_best_att_50_sol_50_20250226_194819
cchoi1
2025-02-27T06:28:46Z
14
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-27T06:28:44Z
0
--- dataset_info: features: - name: problem_id dtype: string - name: prompt dtype: string - name: canonical_solution dtype: string - name: chosen dtype: string - name: rejected dtype: string - name: chosen_attack_explanation dtype: string - name: chosen_solution dtype: string - name: chosen_solution_explanation dtype: string - name: chosen_solve_rate dtype: float64 - name: rejected_attack_explanation dtype: string - name: rejected_solution dtype: string - name: rejected_solution_explanation dtype: string - name: rejected_solve_rate dtype: float64 splits: - name: train num_bytes: 395933 num_examples: 156 download_size: 40065 dataset_size: 395933 configs: - config_name: default data_files: - split: train path: data/train-* ---
davidberenstein1957/fineweb-2-ron-test
davidberenstein1957
2024-12-10T15:03:29Z
20
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "library:argilla", "region:us", "rlfh", "argilla", "human-feedback" ]
[]
2024-12-10T15:03:26Z
0
--- tags: - rlfh - argilla - human-feedback --- # Dataset Card for fineweb-2-ron-test This dataset has been created with [Argilla](https://github.com/argilla-io/argilla). As shown in the sections below, this dataset can be loaded into your Argilla server as explained in [Load with Argilla](#load-with-argilla), or used directly with the `datasets` library in [Load with `datasets`](#load-with-datasets). ## Using this dataset with Argilla To load with Argilla, you'll just need to install Argilla as `pip install argilla --upgrade` and then use the following code: ```python import argilla as rg ds = rg.Dataset.from_hub("davidberenstein1957/fineweb-2-ron-test", settings="auto") ``` This will load the settings and records from the dataset repository and push them to you Argilla server for exploration and annotation. ## Using this dataset with `datasets` To load the records of this dataset with `datasets`, you'll just need to install `datasets` as `pip install datasets --upgrade` and then use the following code: ```python from datasets import load_dataset ds = load_dataset("davidberenstein1957/fineweb-2-ron-test") ``` This will only load the records of the dataset, but not the Argilla settings. ## Dataset Structure This dataset repo contains: * Dataset records in a format compatible with HuggingFace `datasets`. These records will be loaded automatically when using `rg.Dataset.from_hub` and can be loaded independently using the `datasets` library via `load_dataset`. * The [annotation guidelines](#annotation-guidelines) that have been used for building and curating the dataset, if they've been defined in Argilla. * A dataset configuration folder conforming to the Argilla dataset format in `.argilla`. The dataset is created in Argilla with: **fields**, **questions**, **suggestions**, **metadata**, **vectors**, and **guidelines**. ### Fields The **fields** are the features or text of a dataset's records. For example, the 'text' column of a text classification dataset of the 'prompt' column of an instruction following dataset. | Field Name | Title | Type | Required | | ---------- | ----- | ---- | -------- | | text | text | text | False | ### Questions The **questions** are the questions that will be asked to the annotators. They can be of different types, such as rating, text, label_selection, multi_label_selection, or ranking. | Question Name | Title | Type | Required | Description | Values/Labels | | ------------- | ----- | ---- | -------- | ----------- | ------------- | | text_0 | text_0 | text | True | N/A | N/A | <!-- check length of metadata properties --> ### Metadata The **metadata** is a dictionary that can be used to provide additional information about the dataset record. | Metadata Name | Title | Type | Values | Visible for Annotators | | ------------- | ----- | ---- | ------ | ---------------------- | | language_score | language_score | float | - | True | | minhash_cluster_size | minhash_cluster_size | integer | - | True | ### Data Splits The dataset contains a single split, which is `train`. ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation guidelines [More Information Needed] #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions [More Information Needed]
ferrazzipietro/IK_llama3.1-8b_e3c_16_64_0.01
ferrazzipietro
2024-12-10T13:30:30Z
15
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-09T17:12:31Z
0
--- dataset_info: features: - name: inference_prompt dtype: string - name: sentence dtype: string - name: model_responses dtype: string - name: ground_truth dtype: string splits: - name: validation num_bytes: 88868 num_examples: 106 - name: test num_bytes: 714882 num_examples: 666 download_size: 271360 dataset_size: 803750 configs: - config_name: default data_files: - split: validation path: data/validation-* - split: test path: data/test-* ---
ohassane/gptclonebench
ohassane
2025-06-04T15:10:25Z
414
1
[ "language:code", "license:apache-2.0", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "region:us", "semantic-clones", "Moderately type-3", "type-4", "cross-language", "java", "python" ]
[]
2025-04-19T14:26:45Z
0
--- license: apache-2.0 language: - code task: - code-clone-detection tags: - semantic-clones - Moderately type-3 - type-4 - cross-language - java - python configs: - config_name: default data_files: - split: train path: data/train/all_clones*.jsonl - split: validation path: data/validation/validate_clones.jsonl - split: eval path: data/eval/eval_clones.jsonl --- # GPTCloneBench **GPTCloneBench** is a private dataset of code‑clone pairs, the official GitHub page can be found here: https://github.com/srlabUsask/GPTCloneBench. This dataset is unofficial and was created from the GPTCloneBench github to aid in training LLMs for my project. ## Files All four files live under `data/` in the repo: Each line in these JSONL files has fields: - `code1` (string) - `code2` (string) - `clone_type` (string or null) - `language` (string: `"java"`, `"python"`, or `"cross-language-java-python"`) - `semantic` (boolean or null) - `chain_of_thought` (string)
OLAIR/numina_math_ko_verifiable_540k
OLAIR
2025-03-05T05:17:08Z
115
2
[ "language:ko", "license:mit", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-05T05:13:37Z
0
--- dataset_info: features: - name: original dtype: string - name: reference dtype: string - name: problem dtype: string - name: source dtype: string - name: answer dtype: string splits: - name: train num_bytes: 873006977 num_examples: 539149 download_size: 452093917 dataset_size: 873006977 configs: - config_name: default data_files: - split: train path: data/train-* license: mit language: - ko --- # Dataset Card: OLAIR/numina_math_ko_verifiable_540k **Overview:** A paired dataset of math questions (translated into Korean using GPT-4o-mini) and verifiable answers. Intended for RL training (e.g., GRPO) and mathematical reasoning tasks. **Sources:** - **Questions:** Derived from [AI-MO/NuminaMath-CoT](https://huggingface.co/datasets/AI-MO/NuminaMath-CoT) - **Answers:** Extracted from [flatlander1024/numinamath_verifiable_cleaned](https://huggingface.co/datasets/flatlander1024/numinamath_verifiable_cleaned?row=15) **Key Points:** - **Translation:** No-cleansing version; translations may contain errors. - **Usage:** Suitable for RL and language model training in math-related tasks. **Contact:** ``` [email protected] ```
mteb/KorFin
mteb
2025-05-06T12:37:12Z
0
0
[ "task_categories:text-classification", "task_ids:sentiment-analysis", "task_ids:sentiment-scoring", "task_ids:sentiment-classification", "task_ids:hate-speech-detection", "annotations_creators:expert-annotated", "multilinguality:monolingual", "language:kor", "license:cc-by-sa-4.0", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2301.03136", "arxiv:2502.13595", "arxiv:2210.07316", "region:us", "mteb", "text" ]
[ "text-classification" ]
2025-05-06T12:37:09Z
0
--- annotations_creators: - expert-annotated language: - kor license: cc-by-sa-4.0 multilinguality: monolingual task_categories: - text-classification task_ids: - sentiment-analysis - sentiment-scoring - sentiment-classification - hate-speech-detection dataset_info: features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 381770 num_examples: 2048 download_size: 222822 dataset_size: 381770 configs: - config_name: default data_files: - split: train path: data/train-* tags: - mteb - text --- <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md --> <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;"> <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">KorFin</h1> <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div> <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div> </div> The KorFin-ASC is an extension of KorFin-ABSA, which is a financial sentiment analysis dataset including 8818 samples with (aspect, polarity) pairs annotated. The samples were collected from KLUE-TC and analyst reports from Naver Finance. | | | |---------------|---------------------------------------------| | Task category | t2c | | Domains | News, Written, Financial | | Reference | https://huggingface.co/datasets/amphora/korfin-asc | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["KorFin"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` <!-- Datasets want link to arxiv in readme to autolink dataset with paper --> To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @article{son2023removing, author = {Son, Guijin and Lee, Hanwool and Kang, Nahyeon and Hahm, Moonjeong}, journal = {arXiv preprint arXiv:2301.03136}, title = {Removing Non-Stationary Knowledge From Pre-Trained Language Models for Entity-Level Sentiment Classification in Finance}, year = {2023}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics <details> <summary> Dataset Statistics</summary> The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("KorFin") desc_stats = task.metadata.descriptive_stats ``` ```json { "train": { "num_samples": 2048, "number_of_characters": 154385, "number_texts_intersect_with_train": null, "min_text_length": 12, "average_text_length": 75.38330078125, "max_text_length": 216, "unique_text": 1869, "unique_labels": 3, "labels": { "1": { "count": 602 }, "0": { "count": 689 }, "2": { "count": 757 } } } } ``` </details> --- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*
Blancy/secondfiltered-math220k-difficulty_stratified_10k_filtered_only_medium_difficulty
Blancy
2025-05-24T03:44:46Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-24T03:39:44Z
0
--- dataset_info: features: - name: problem dtype: string - name: solution dtype: string - name: answer dtype: string - name: problem_type dtype: string - name: question_type dtype: string - name: source dtype: string - name: uuid dtype: string - name: is_reasoning_complete sequence: bool - name: generations dtype: string - name: correctness_math_verify sequence: bool - name: correctness_llama dtype: 'null' - name: finish_reasons sequence: string - name: correctness_count dtype: int64 - name: messages list: - name: content dtype: string - name: role dtype: string - name: number_of_tokens dtype: int64 - name: original_index dtype: int64 splits: - name: train num_bytes: 23519604 num_examples: 1000 download_size: 10750769 dataset_size: 23519604 configs: - config_name: default data_files: - split: train path: data/train-* --- ## Dataset Details This dataset origins from `Blancy/secondfiltered-math220k-difficulty_stratified_10k`, the orginal index means the index in\ `Blancy/secondfiltered-math220k-difficulty_stratified_10k`.
french-datasets/Unique007_french_phone_1421_samples_16khz
french-datasets
2025-05-23T17:35:47Z
0
0
[ "task_categories:automatic-speech-recognition", "language:fra", "region:us" ]
[ "automatic-speech-recognition" ]
2025-05-23T17:34:37Z
0
--- language: - fra viewer: false task_categories: - automatic-speech-recognition --- Ce répertoire est vide, il a été créé pour améliorer le référencement du jeu de données [Unique007/french_phone_1421_samples_16khz](https://huggingface.co/datasets/Unique007/french_phone_1421_samples_16khz).
kajuma/training_01-09_patch
kajuma
2025-01-09T12:24:32Z
28
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-09T12:21:36Z
0
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 5585302957.552539 num_examples: 1263650 - name: test num_bytes: 28066849.03292733 num_examples: 6350 download_size: 3260835293 dataset_size: 5613369806.585466 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
HungVu2003/opt-350m_beta_1.0_alpha_0.0_num-company_3_dataset_2_for_gen_3
HungVu2003
2025-04-07T23:22:15Z
14
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-07T23:22:10Z
0
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 1744126 num_examples: 12500 download_size: 851003 dataset_size: 1744126 configs: - config_name: default data_files: - split: train path: data/train-* ---
tmpmodelsave/beta05_balanced_type12_sftloss_moredata500tmp10
tmpmodelsave
2025-01-22T00:43:33Z
14
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-22T00:43:31Z
0
--- dataset_info: features: - name: idx dtype: int64 - name: gt dtype: string - name: prompt dtype: string - name: level dtype: string - name: type dtype: string - name: solution dtype: string - name: my_solu sequence: string - name: pred sequence: string - name: rewards sequence: bool splits: - name: train num_bytes: 43029121 num_examples: 15000 download_size: 15842650 dataset_size: 43029121 configs: - config_name: default data_files: - split: train path: data/train-* ---
1g0rrr/sam_frames3
1g0rrr
2025-04-04T04:10:13Z
21
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-04-04T03:40:03Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "sam_double", "total_episodes": 5, "total_frames": 2627, "total_tasks": 1, "total_videos": 15, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:5" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 7 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_side", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 7 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_side", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.side": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
TeoGchx/BEAT_HML3D_whisper_wavtokenizer_smpl_motokenizer_body
TeoGchx
2025-03-19T14:06:13Z
22
0
[ "size_categories:1K<n<10K", "modality:audio", "modality:text", "region:us" ]
[]
2025-03-19T13:34:03Z
0
--- dataset_info: features: - name: motion sequence: sequence: float32 - name: beat_motion struct: - name: betas sequence: sequence: float32 - name: expressions sequence: sequence: float32 - name: gender dtype: string - name: mocap_frame_rate dtype: int64 - name: model dtype: string - name: poses sequence: sequence: float32 - name: trans sequence: sequence: float32 - name: text sequence: string - name: meta_data struct: - name: duration dtype: float64 - name: name dtype: string - name: num_frames dtype: int64 - name: num_words dtype: int64 - name: speaker dtype: string - name: whisper struct: - name: language dtype: string - name: segments list: - name: end dtype: float64 - name: start dtype: float64 - name: text dtype: string - name: aligned_text struct: - name: segments list: - name: end dtype: float64 - name: start dtype: float64 - name: text dtype: string - name: words list: - name: end dtype: float64 - name: score dtype: float64 - name: start dtype: float64 - name: word dtype: string - name: word_segments list: - name: end dtype: float64 - name: score dtype: float64 - name: start dtype: float64 - name: word dtype: string - name: audio dtype: audio: sampling_rate: 24000 - name: audio_token sequence: sequence: sequence: int64 - name: motion_token sequence: sequence: int64 splits: - name: val num_bytes: 668452035.0 num_examples: 106 - name: train num_bytes: 6066355197.91 num_examples: 1093 - name: test num_bytes: 1622723026.0 num_examples: 265 download_size: 8175141242 dataset_size: 8357530258.91 configs: - config_name: default data_files: - split: val path: data/val-* - split: train path: data/train-* - split: test path: data/test-* ---
dgambettaphd/D_gen2_run0_Meta-Llama-3.1-8B-bnb-4bit_wiki_doc10_real64_synt64
dgambettaphd
2025-03-14T02:20:59Z
16
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-14T02:20:57Z
0
--- dataset_info: features: - name: id dtype: int64 - name: doc dtype: string splits: - name: train num_bytes: 5512 num_examples: 10 download_size: 6962 dataset_size: 5512 configs: - config_name: default data_files: - split: train path: data/train-* ---
LimYeri/Python_Code_Instructions
LimYeri
2024-06-05T15:51:33Z
36
2
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-06-05T15:51:19Z
1
--- dataset_info: features: - name: input dtype: string - name: output dtype: string splits: - name: train num_bytes: 633691760 num_examples: 340642 download_size: 307762448 dataset_size: 633691760 configs: - config_name: default data_files: - split: train path: data/train-* ---
pnv2003/CodeMMLU-Reasoning-V2
pnv2003
2025-03-31T02:10:43Z
17
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-31T02:10:30Z
0
--- dataset_info: features: - name: task_id dtype: string - name: question dtype: string - name: choices dtype: string - name: answer dtype: string - name: prompt dtype: string - name: responses dtype: string - name: best_response_index dtype: float64 - name: predict dtype: string - name: success dtype: bool splits: - name: train num_bytes: 53648225 num_examples: 3440 download_size: 17457364 dataset_size: 53648225 configs: - config_name: default data_files: - split: train path: data/train-* ---
preetham1234/medquad-t
preetham1234
2025-03-11T09:44:43Z
12
0
[ "size_categories:1K<n<10K", "format:parquet", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-11T09:38:07Z
0
--- dataset_info: features: - name: input_ids sequence: int32 - name: attention_mask sequence: int8 - name: teacher_input_ids sequence: int64 - name: teacher_attention_mask sequence: int64 splits: - name: train num_bytes: 430160000 num_examples: 5000 download_size: 3023364 dataset_size: 430160000 configs: - config_name: default data_files: - split: train path: data/train-* ---
allenai/pixmo-point-explanations
allenai
2024-12-05T18:45:24Z
142
7
[ "task_categories:visual-question-answering", "language:en", "license:odc-by", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "visual-question-answering" ]
2024-11-27T16:45:22Z
0
--- language: - en license: odc-by task_categories: - visual-question-answering dataset_info: features: - name: image_url dtype: string - name: image_sha256 dtype: string - name: question dtype: string - name: response dtype: string - name: parsed_response dtype: string - name: alt_text sequence: string - name: inline_text sequence: string - name: points sequence: sequence: sequence: float64 splits: - name: train num_bytes: 91111483 num_examples: 79551 download_size: 51811429 dataset_size: 91111483 configs: - config_name: default data_files: - split: train path: data/train-* --- # PixMo-Point-Explanations PixMo-Point-Explanations is a dataset of images, questions, and answers with explanations that can include in-line points that refer to parts of the image. It can be used to train vison language models to respond to questions through a mixture of text and points. PixMo-Point-Explanations is part of the [PixMo dataset collection](https://huggingface.co/collections/allenai/pixmo-674746ea613028006285687b) and was used to train the [Molmo family of models](https://huggingface.co/collections/allenai/molmo-66f379e6fe3b8ef090a8ca19) We consider this dataset experimental, while these explanations can be very informative we have also seen models can hallucinate more when generating outputs of this sort. For that reason, the Molmo models are trained to only generate outputs like this when specifically requested by prefixing input questions with "point_qa:". This mode can be used in the [Molmo demo](https://multimodal-29mpz7ym.vercel.app/share/2921825e-ef44-49fa-a6cb-1956da0be62a) Quick links: - 📃 [Paper](https://molmo.allenai.org/paper.pdf) - 🎥 [Blog with Videos](https://molmo.allenai.org/blog) ## Loading ```python data = datasets.load_dataset("allenai/pixmo-point-explanations") ``` ## Data Format Images are stored as URLs. The in-line points use a format from the LLM/annotators that does not exactly match the Molmo format. The data includes some fields derived from these responses to make them easier to parse, these fields can be null if the original response was not parsed. - `parsed_response` responses with the text "<|POINT|>" where the inline point annotations were - `alt_text` the alt text for each point annotation in the response - `inline_text` the inline text for each point annotation in the response - `points` the list-of-list of points for each point annotation ## Checking Image Hashes Image hashes are included to support double-checking that the downloaded image matches the annotated image. It can be checked like this: ```python from hashlib import sha256 import requests example = data[0] image_bytes = requests.get(example["image_url"]).content byte_hash = sha256(image_bytes).hexdigest() assert byte_hash == example["image_sha256"] ``` ## License This dataset is licensed under ODC-BY-1.0. It is intended for research and educational use in accordance with Ai2's [Responsible Use Guidelines](https://allenai.org/responsible-use). This dataset includes data generated from Claude which are subject to Anthropic [terms of service](https://www.anthropic.com/legal/commercial-terms) and [usage policy](https://www.anthropic.com/legal/aup).
DeepPavlov/clinc_oos_ru
DeepPavlov
2025-04-06T22:46:50Z
18
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-24T14:15:18Z
0
--- dataset_info: features: - name: text dtype: string - name: label dtype: int64 - name: label_text dtype: string - name: label_text_ru dtype: string splits: - name: train num_bytes: 2219572 num_examples: 15250 - name: test num_bytes: 773568 num_examples: 5500 - name: validation num_bytes: 773568 num_examples: 5500 download_size: 891013 dataset_size: 3766708 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: validation path: data/validation-* ---
HappyAIUser/alpaca-sharegpt-data
HappyAIUser
2024-10-21T02:34:38Z
22
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-21T02:34:35Z
0
--- dataset_info: features: - name: conversations struct: - name: conversations list: - name: from dtype: string - name: value dtype: string - name: id dtype: string splits: - name: train num_bytes: 20818233 num_examples: 52002 download_size: 11855874 dataset_size: 20818233 configs: - config_name: default data_files: - split: train path: data/train-* ---
oda-99/aozora_head_3_consonant_hira
oda-99
2025-01-05T06:00:06Z
15
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-05T05:21:47Z
0
--- dataset_info: features: - name: section dtype: string - name: rhyme sequence: string - name: new_text sequence: string splits: - name: train num_bytes: 160404723.0 num_examples: 1012032 - name: test num_bytes: 17822747.0 num_examples: 112448 download_size: 105154968 dataset_size: 178227470.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
TAUR-dev/SIE_EVAL__BoN__rl-long-thinks__samples
TAUR-dev
2025-06-09T21:50:27Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-09T21:50:26Z
0
--- dataset_info: features: - name: doc_id dtype: int64 - name: doc dtype: string - name: target dtype: string - name: arguments dtype: string - name: resps dtype: string - name: filtered_resps dtype: string - name: doc_hash dtype: string - name: prompt_hash dtype: string - name: target_hash dtype: string - name: exact_match dtype: int64 - name: extracted_answers dtype: string - name: source_file dtype: string - name: generation dtype: string - name: info dtype: string splits: - name: train num_bytes: 52054848 num_examples: 604 download_size: 8747942 dataset_size: 52054848 configs: - config_name: default data_files: - split: train path: data/train-* ---
michsethowusu/akan-ewe_sentence-pairs
michsethowusu
2025-04-03T13:09:18Z
7
0
[ "size_categories:10K<n<100K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-03T13:09:14Z
0
--- dataset_info: features: - name: score dtype: float32 - name: Akan dtype: string - name: Ewe dtype: string splits: - name: train num_bytes: 6707696 num_examples: 64271 download_size: 6707696 dataset_size: 6707696 configs: - config_name: default data_files: - split: train path: Akan-Ewe_Sentence-Pairs.csv --- # Akan-Ewe_Sentence-Pairs Dataset This dataset contains sentence pairs for African languages along with similarity scores. It can be used for machine translation, sentence alignment, or other natural language processing tasks. This dataset is based on the NLLBv1 dataset, published on OPUS under an open-source initiative led by META. You can find more information here: [OPUS - NLLB-v1](https://opus.nlpl.eu/legacy/NLLB-v1.php) ## Metadata - **File Name**: Akan-Ewe_Sentence-Pairs - **Number of Rows**: 64271 - **Number of Columns**: 3 - **Columns**: score, Akan, Ewe ## Dataset Description The dataset contains sentence pairs in African languages with an associated similarity score. Each row consists of three columns: 1. `score`: The similarity score between the two sentences (range from 0 to 1). 2. `Akan`: The first sentence in the pair (language 1). 3. `Ewe`: The second sentence in the pair (language 2). This dataset is intended for use in training and evaluating machine learning models for tasks like translation, sentence similarity, and cross-lingual transfer learning. ## References Below are papers related to how the data was collected and used in various multilingual and cross-lingual applications: [1] Holger Schwenk and Matthijs Douze, Learning Joint Multilingual Sentence Representations with Neural Machine Translation, ACL workshop on Representation Learning for NLP, 2017 [2] Holger Schwenk and Xian Li, A Corpus for Multilingual Document Classification in Eight Languages, LREC, pages 3548-3551, 2018. [3] Holger Schwenk, Filtering and Mining Parallel Data in a Joint Multilingual Space ACL, July 2018 [4] Alexis Conneau, Guillaume Lample, Ruty Rinott, Adina Williams, Samuel R. Bowman, Holger Schwenk and Veselin Stoyanov, XNLI: Cross-lingual Sentence Understanding through Inference, EMNLP, 2018. [5] Mikel Artetxe and Holger Schwenk, Margin-based Parallel Corpus Mining with Multilingual Sentence Embeddings arXiv, Nov 3 2018. [6] Mikel Artetxe and Holger Schwenk, Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond arXiv, Dec 26 2018. [7] Holger Schwenk, Vishrav Chaudhary, Shuo Sun, Hongyu Gong and Paco Guzman, WikiMatrix: Mining 135M Parallel Sentences in 1620 Language Pairs from Wikipedia arXiv, July 11 2019. [8] Holger Schwenk, Guillaume Wenzek, Sergey Edunov, Edouard Grave and Armand Joulin CCMatrix: Mining Billions of High-Quality Parallel Sentences on the WEB [9] Paul-Ambroise Duquenne, Hongyu Gong, Holger Schwenk, Multimodal and Multilingual Embeddings for Large-Scale Speech Mining, NeurIPS 2021, pages 15748-15761. [10] Kevin Heffernan, Onur Celebi, and Holger Schwenk, Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages
Lansechen/details_Lansechen__Qwen2.5-3B-Instruct-Distill-om220k-1k-simplified-fem8192-batch32-epoch1-8192
Lansechen
2025-03-26T08:25:54Z
7
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-26T07:52:45Z
0
--- pretty_name: Evaluation run of Lansechen/Qwen2.5-3B-Instruct-Distill-om220k-1k-simplified-fem8192-batch32-epoch1-8192 dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [Lansechen/Qwen2.5-3B-Instruct-Distill-om220k-1k-simplified-fem8192-batch32-epoch1-8192](https://huggingface.co/Lansechen/Qwen2.5-3B-Instruct-Distill-om220k-1k-simplified-fem8192-batch32-epoch1-8192).\n\ \nThe dataset is composed of 2 configuration, each one coresponding to one of the\ \ evaluated task.\n\nThe dataset has been created from 4 run(s). Each run can be\ \ found as a specific split in each configuration, the split being named using the\ \ timestamp of the run.The \"train\" split is always pointing to the latest results.\n\ \nAn additional configuration \"results\" store all the aggregated results of the\ \ run.\n\nTo load the details from a run, you can for instance do the following:\n\ ```python\nfrom datasets import load_dataset\ndata = load_dataset(\"Lansechen/details_Lansechen__Qwen2.5-3B-Instruct-Distill-om220k-1k-simplified-fem8192-batch32-epoch1-8192\"\ ,\n\t\"results\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the\ \ [latest results from run 2025-03-26T16:25:45.239515](https://huggingface.co/datasets/Lansechen/details_Lansechen__Qwen2.5-3B-Instruct-Distill-om220k-1k-simplified-fem8192-batch32-epoch1-8192/blob/main/results_2025-03-26T16-25-45.239515.json)(note\ \ that their might be results for other tasks in the repos if successive evals didn't\ \ cover the same tasks. You find each in the results and the \"latest\" split for\ \ each eval):\n\n```python\n{\n \"all\": {\n \"extractive_match\": 0.642,\n\ \ \"extractive_match_stderr\": 0.021461434862859122\n },\n \"custom|math_500|0\"\ : {\n \"extractive_match\": 0.642,\n \"extractive_match_stderr\":\ \ 0.021461434862859122\n }\n}\n```" repo_url: https://huggingface.co/Lansechen/Qwen2.5-3B-Instruct-Distill-om220k-1k-simplified-fem8192-batch32-epoch1-8192 configs: - config_name: custom_aime24_0 data_files: - split: 2025_03_26T16_00_59.718542 path: - '**/details_custom|aime24|0_2025-03-26T16-00-59.718542.parquet' - split: 2025_03_26T16_18_10.335628 path: - '**/details_custom|aime24|0_2025-03-26T16-18-10.335628.parquet' - split: latest path: - '**/details_custom|aime24|0_2025-03-26T16-18-10.335628.parquet' - config_name: custom_math_500_0 data_files: - split: 2025_03_26T15_52_43.426978 path: - '**/details_custom|math_500|0_2025-03-26T15-52-43.426978.parquet' - split: 2025_03_26T16_25_45.239515 path: - '**/details_custom|math_500|0_2025-03-26T16-25-45.239515.parquet' - split: latest path: - '**/details_custom|math_500|0_2025-03-26T16-25-45.239515.parquet' - config_name: results data_files: - split: 2025_03_26T15_52_43.426978 path: - results_2025-03-26T15-52-43.426978.parquet - split: 2025_03_26T16_00_59.718542 path: - results_2025-03-26T16-00-59.718542.parquet - split: 2025_03_26T16_18_10.335628 path: - results_2025-03-26T16-18-10.335628.parquet - split: 2025_03_26T16_25_45.239515 path: - results_2025-03-26T16-25-45.239515.parquet - split: latest path: - results_2025-03-26T16-25-45.239515.parquet --- # Dataset Card for Evaluation run of Lansechen/Qwen2.5-3B-Instruct-Distill-om220k-1k-simplified-fem8192-batch32-epoch1-8192 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [Lansechen/Qwen2.5-3B-Instruct-Distill-om220k-1k-simplified-fem8192-batch32-epoch1-8192](https://huggingface.co/Lansechen/Qwen2.5-3B-Instruct-Distill-om220k-1k-simplified-fem8192-batch32-epoch1-8192). The dataset is composed of 2 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 4 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run. To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("Lansechen/details_Lansechen__Qwen2.5-3B-Instruct-Distill-om220k-1k-simplified-fem8192-batch32-epoch1-8192", "results", split="train") ``` ## Latest results These are the [latest results from run 2025-03-26T16:25:45.239515](https://huggingface.co/datasets/Lansechen/details_Lansechen__Qwen2.5-3B-Instruct-Distill-om220k-1k-simplified-fem8192-batch32-epoch1-8192/blob/main/results_2025-03-26T16-25-45.239515.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "extractive_match": 0.642, "extractive_match_stderr": 0.021461434862859122 }, "custom|math_500|0": { "extractive_match": 0.642, "extractive_match_stderr": 0.021461434862859122 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
Mingweipoppy/info7374-assignment4
Mingweipoppy
2025-04-14T05:55:40Z
54
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-14T05:55:36Z
0
--- dataset_info: features: - name: instruction dtype: string - name: chosen dtype: string - name: rejected dtype: string splits: - name: train num_bytes: 37397 num_examples: 50 download_size: 30839 dataset_size: 37397 configs: - config_name: default data_files: - split: train path: data/train-* ---
1231czx/llama3_rr40k_no_balanced_ep3_3e6_bz32tmp07
1231czx
2024-12-21T07:26:20Z
16
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-21T07:26:19Z
0
--- dataset_info: features: - name: idx dtype: int64 - name: gt dtype: string - name: prompt dtype: string - name: level dtype: string - name: type dtype: string - name: solution dtype: string - name: my_solu sequence: string - name: pred sequence: string - name: rewards sequence: bool splits: - name: train num_bytes: 50094724 num_examples: 15000 download_size: 16333134 dataset_size: 50094724 configs: - config_name: default data_files: - split: train path: data/train-* ---
gupta-tanish/llama3-8b-instruct-on-policy-swepo-iteration3
gupta-tanish
2025-04-17T18:37:04Z
15
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-17T18:36:57Z
0
--- dataset_info: features: - name: prompt_id dtype: string - name: prompt dtype: string - name: A0 list: - name: content dtype: string - name: role dtype: string - name: A1 list: - name: content dtype: string - name: role dtype: string - name: A2 list: - name: content dtype: string - name: role dtype: string - name: A3 list: - name: content dtype: string - name: role dtype: string - name: score_A0 dtype: float64 - name: score_A1 dtype: float64 - name: score_A2 dtype: float64 - name: score_A3 dtype: float64 splits: - name: train num_bytes: 233841405 num_examples: 19996 - name: test num_bytes: 233841405 num_examples: 19996 download_size: 256676778 dataset_size: 467682810 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
ahmedheakl/r1_90k_instruct
ahmedheakl
2025-02-25T06:16:11Z
32
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-25T05:08:42Z
0
--- dataset_info: features: - name: id dtype: string - name: image dtype: image - name: conversations list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 8740383946 num_examples: 93131 download_size: 7507294773 dataset_size: 8740383946 configs: - config_name: default data_files: - split: train path: data/train-* ---
Daksh1/multiVarData
Daksh1
2025-02-15T17:39:26Z
52
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-15T17:39:05Z
0
--- dataset_info: features: - name: out dtype: string - name: class dtype: string - name: in dtype: string - name: inst dtype: string - name: reversed dtype: string splits: - name: train num_bytes: 139722954 num_examples: 251998 - name: test num_bytes: 17494045 num_examples: 31500 - name: validation num_bytes: 17474194 num_examples: 31500 download_size: 71363788 dataset_size: 174691193 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: validation path: data/validation-* ---
Oussama1209/mnlp_rag_corpus
Oussama1209
2025-06-10T20:45:29Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-10T20:44:31Z
0
--- dataset_info: features: - name: content dtype: string - name: source dtype: string splits: - name: train num_bytes: 66418835 num_examples: 100000 download_size: 37554850 dataset_size: 66418835 configs: - config_name: default data_files: - split: train path: data/train-* ---
giulio98/synthetic_dataset-1024
giulio98
2025-04-24T16:17:52Z
37
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-24T16:08:50Z
0
--- dataset_info: - config_name: phase1 features: - name: id dtype: string - name: context dtype: string - name: question dtype: string - name: complexity dtype: int32 - name: answer dtype: string - name: answer_prefix dtype: string - name: max_new_tokens dtype: int64 - name: task_description dtype: string splits: - name: test num_bytes: 351727 num_examples: 50 download_size: 65652 dataset_size: 351727 - config_name: phase2 features: - name: id dtype: string - name: context dtype: string - name: question dtype: string - name: complexity dtype: int32 - name: answer dtype: string - name: answer_prefix dtype: string - name: max_new_tokens dtype: int64 - name: task_description dtype: string splits: - name: test num_bytes: 351355 num_examples: 50 download_size: 62859 dataset_size: 351355 - config_name: phase3 features: - name: id dtype: string - name: context dtype: string - name: question dtype: string - name: complexity dtype: int32 - name: answer dtype: string - name: answer_prefix dtype: string - name: max_new_tokens dtype: int64 - name: task_description dtype: string splits: - name: test num_bytes: 355428 num_examples: 50 download_size: 53091 dataset_size: 355428 - config_name: phase4 features: - name: id dtype: string - name: context dtype: string - name: question dtype: string - name: complexity dtype: int32 - name: answer dtype: string - name: answer_prefix dtype: string - name: max_new_tokens dtype: int64 - name: task_description dtype: string splits: - name: test num_bytes: 357843 num_examples: 50 download_size: 58688 dataset_size: 357843 - config_name: phase5 features: - name: id dtype: string - name: context dtype: string - name: question dtype: string - name: complexity dtype: int32 - name: answer dtype: string - name: answer_prefix dtype: string - name: max_new_tokens dtype: int64 - name: task_description dtype: string splits: - name: test num_bytes: 354695 num_examples: 50 download_size: 56489 dataset_size: 354695 - config_name: phase6 features: - name: id dtype: string - name: context dtype: string - name: question dtype: string - name: complexity dtype: int32 - name: answer dtype: string - name: answer_prefix dtype: string - name: max_new_tokens dtype: int64 - name: task_description dtype: string splits: - name: test num_bytes: 357317 num_examples: 50 download_size: 53696 dataset_size: 357317 - config_name: phase7 features: - name: id dtype: string - name: context dtype: string - name: question dtype: string - name: complexity dtype: int32 - name: answer dtype: string - name: answer_prefix dtype: string - name: max_new_tokens dtype: int64 - name: task_description dtype: string splits: - name: test num_bytes: 360348 num_examples: 50 download_size: 60090 dataset_size: 360348 - config_name: phase8 features: - name: id dtype: string - name: context dtype: string - name: question dtype: string - name: complexity dtype: int32 - name: answer dtype: string - name: answer_prefix dtype: string - name: max_new_tokens dtype: int64 - name: task_description dtype: string splits: - name: test num_bytes: 359024 num_examples: 50 download_size: 58608 dataset_size: 359024 configs: - config_name: phase1 data_files: - split: test path: phase1/test-* - config_name: phase2 data_files: - split: test path: phase2/test-* - config_name: phase3 data_files: - split: test path: phase3/test-* - config_name: phase4 data_files: - split: test path: phase4/test-* - config_name: phase5 data_files: - split: test path: phase5/test-* - config_name: phase6 data_files: - split: test path: phase6/test-* - config_name: phase7 data_files: - split: test path: phase7/test-* - config_name: phase8 data_files: - split: test path: phase8/test-* ---
CohereLabs/aya_evaluation_suite
CohereLabs
2025-04-15T08:46:23Z
1,321
51
[ "task_categories:text-generation", "language_creators:crowdsourced", "language_creators:expert-generated", "language_creators:machine-generated", "multilinguality:multilingual", "source_datasets:original", "source_datasets:extended", "language:afr", "language:sqi", "language:amh", "language:ara", "language:aze", "language:bel", "language:ben", "language:bul", "language:cat", "language:ceb", "language:ces", "language:kur", "language:cym", "language:dan", "language:deu", "language:ell", "language:eng", "language:epo", "language:est", "language:eus", "language:fin", "language:fra", "language:gla", "language:gle", "language:glg", "language:guj", "language:hat", "language:hau", "language:heb", "language:hin", "language:hun", "language:hye", "language:ibo", "language:ind", "language:isl", "language:ita", "language:jav", "language:jpn", "language:kan", "language:kat", "language:kaz", "language:mon", "language:khm", "language:kir", "language:kor", "language:lao", "language:lit", "language:ltz", "language:lav", "language:mal", "language:mar", "language:mkd", "language:mlt", "language:mri", "language:mya", "language:nld", "language:nor", "language:nep", "language:sot", "language:pus", "language:pes", "language:mlg", "language:pol", "language:por", "language:ron", "language:rus", "language:sin", "language:slk", "language:slv", "language:smo", "language:sna", "language:snd", "language:som", "language:spa", "language:srp", "language:sun", "language:swe", "language:swa", "language:tam", "language:tel", "language:tgk", "language:tha", "language:tur", "language:ukr", "language:urd", "language:uzb", "language:vie", "language:xho", "language:yid", "language:yor", "language:zho", "language:msa", "language:zul", "language:ace", "language:bjn", "language:kas", "language:kau", "language:min", "language:mni", "language:taq", "language:nso", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2402.06619", "region:us" ]
[ "text-generation" ]
2024-02-06T08:54:09Z
1
--- language_creators: - crowdsourced - expert-generated - machine-generated language: - afr - sqi - amh - ara - aze - bel - ben - bul - cat - ceb - ces - kur - cym - dan - deu - ell - eng - epo - est - eus - fin - fra - gla - gle - glg - guj - hat - hau - heb - hin - hun - hye - ibo - ind - isl - ita - jav - jpn - kan - kat - kaz - mon - khm - kir - kor - lao - lit - ltz - lav - mal - mar - mkd - mlt - mri - mya - nld - nor - nep - sot - pus - pes - mlg - pol - por - ron - rus - sin - slk - slv - smo - sna - snd - som - spa - srp - sun - swe - swa - tam - tel - tgk - tha - tur - ukr - urd - uzb - vie - xho - yid - yor - zho - msa - zul - ace - bjn - kas - kau - min - mni - taq - nso license: apache-2.0 multilinguality: - multilingual size_categories: - 10K<n<100K source_datasets: - original - extended task_categories: - text-generation pretty_name: Aya Evaluation Suite dataset_info: - config_name: aya_human_annotated features: - name: id dtype: int64 - name: inputs dtype: string - name: targets dtype: string - name: language dtype: string - name: script dtype: string splits: - name: test num_bytes: 1624958 num_examples: 1750 download_size: 974483 dataset_size: 1624958 - config_name: dolly_human_edited features: - name: id dtype: int64 - name: inputs dtype: string - name: targets dtype: string - name: language dtype: string - name: script dtype: string - name: source_id dtype: int64 splits: - name: test num_bytes: 1219111 num_examples: 1200 download_size: 602117 dataset_size: 1219111 - config_name: dolly_machine_translated features: - name: id dtype: int64 - name: inputs dtype: string - name: targets dtype: string - name: language dtype: string - name: script dtype: string - name: source_id dtype: int64 splits: - name: test num_bytes: 39679355 num_examples: 23800 download_size: 20100505 dataset_size: 39679355 configs: - config_name: aya_human_annotated data_files: - split: test path: aya_human_annotated/test-* - config_name: dolly_human_edited data_files: - split: test path: dolly_human_edited/test-* - config_name: dolly_machine_translated data_files: - split: test path: dolly_machine_translated/test-* --- ![Aya Header](https://huggingface.co/datasets/CohereLabs/aya_dataset/resolve/main/aya_header.png) # Dataset Summary `Aya Evaluation Suite` contains a total of 26,750 open-ended conversation-style prompts to evaluate multilingual open-ended generation quality.\ To strike a balance between language coverage and the quality that comes with human curation, we create an evaluation suite that includes: 1) human-curated examples in 7 languages (`tur, eng, yor, arb, zho, por, tel`) → `aya-human-annotated`. 2) machine-translations of handpicked examples into 101 languages → `dolly-machine-translated`. 3) human-post-edited translations into 6 languages (`hin, srp, rus, fra, arb, spa`) → `dolly-human-edited`. --- - **Curated by:** Contributors of [Aya Open Science Intiative](https://aya.for.ai/), professional annotators, and synthetic generation - **Language(s):** 101 languages - **License:** [Apache 2.0](https://opensource.org/license/apache-2-0) - **Aya Datasets Family:** | Name | Explanation | |------|--------------| | [aya_dataset](https://huggingface.co/datasets/CohereLabs/aya_dataset) | Human-annotated multilingual instruction finetuning dataset, comprising over 204K instances across 65 languages. | | [aya_collection](https://huggingface.co/datasets/CohereLabs/aya_collection) | Created by applying instruction-style templates from fluent speakers to 44 datasets, including translations of 19 instruction-style datasets into 101 languages, providing 513M instances for various tasks.| | [aya_collection_language_split](https://huggingface.co/datasets/CohereLabs/aya_collection_language_split) | Aya Collection structured based on language level subsets. | | [aya_evaluation_suite](https://huggingface.co/datasets/CohereLabs/aya_evaluation_suite) | A diverse evaluation set for multilingual open-ended generation, featuring 250 culturally grounded prompts in 7 languages, 200 translated prompts in 24 languages, and human-edited versions selected for cross-cultural relevance from English Dolly in 6 languages.| | [aya_redteaming](https://huggingface.co/datasets/CohereLabs/aya_redteaming)| A red-teaming dataset consisting of harmful prompts in 8 languages across 9 different categories of harm with explicit labels for "global" and "local" harm.| # Dataset The `Aya Evaluation Suite` includes the following subsets: 1. **aya-human-annotated**: 250 original human-written prompts in 7 languages each. 2. **dolly-machine-translated**: 200 human-selected prompts from [databricks-dolly-15k](https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm) , automatically translated with the [NLLB model](https://ai.meta.com/research/no-language-left-behind/) from English into 101 languages (114 dialects in total). 3. **dolly-human-edited**: 200 dolly-machine-translated prompts post-edited by fluent speakers for 6 languages. ## Load with Datasets To load this dataset consisting of prompt-completions with `datasets`, you just need to install Datasets as `pip install datasets --upgrade` and then use the following code: ```python from datasets import load_dataset aya_eval = load_dataset("CohereLabs/aya_evaluation_suite", "aya_human_annotated") ``` ## Data Fields - `id`: Unique id of the data point. - `inputs`: Prompt or input to the language model. - `targets`: Completion or output of the language model. (Not applicable for `dolly-human-edited`) - `language`: The language of the `prompt` and `completion.` - `script`: The writing system of the language. - `source_id`: Corresponding original row index from the [databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) dataset (Field applicable only for subsets `dolly-machine-translated` & `dolly-human-edited`) ## Data Instances Example data instances from the `Aya Evaluation Suite` subsets are listed in the toggled sections below. <details> <summary> <b>aya-human-annotated</b> </summary> ```json { "id": 42, "inputs": "What day is known as Star Wars Day?", "targets": "May 4th (May the 4th be with you!)", "language": "eng", "script": "Latn", } ``` </details> <b>Dolly-machine-translated and dolly-human-edited</b> - These two subsets are parallel datasets (data instances can be mapped using their `id` column). - Note that in the `dolly-machine-translated` subset, we also include the original English subset (`id 1-200`), which is translated into 101 languages. Furthermore, the field `id` can be used to match the translations of the same data instance across languages. - The `source_id` field contains the corresponding original row index from the [databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) dataset. <details> <summary> <b>dolly-machine-translated</b> </summary> ```json { "id": 2, "inputs": "How to escape from a helicopter trapped in water ?", "targets": "If you are ever trapped inside a helicopter while submerged in water, it’s best to try and remain calm until the cabin is completely underwater. It’s better to wait for pressure to be equalized, before you try to open the door or break the glass to escape.", "language": "eng", "script": "Latn", "source_id": 6060, } ``` </details> <details> <summary> <b>dolly-human-edited</b> </summary> ```json { "id": 2, "inputs": "Comment peut-on s'échapper d'un hélicoptère piégé dans l'eau ?", "targets": "-", "language": "fra", "script": "Latn", "source_id": 6060, } ``` </details> ## Statistics The toggled table below lists the breakdown of languages in each subset. ### Languages <details> <summary> <b>aya-human-annotated</b> </summary> | ISO Code | Language | Resources | |----------|----------|---------------| | `tel` | Telugu | Low | | `yor` | Yorùbá | Low | | `arb` | Arabic | High | | `tur` | Turkish | High | | `por` | Portuguese | High | | `zho` | Chinese (Simplified) | High | | `eng` | English | High | </details> <details> <summary> <b>dolly-machine-translated</b> </summary> | ISO Code | Language | Resources | |----------|----------|-----------| | `ace` | Achinese | Low | | `afr` | Afrikaans | Mid | | `amh` | Amharic | Low | | `ara` (`arb`, `acm`, `acq`, `aeb`, `ajp`, `apc`, `ars`, `ary` & `arz`) | Arabic (Standard, Gelet Iraqi, Ta'izzi-Adeni, Tunisian, South Levantine, North Levantine, Najdi, Moroccan & Egyptian) | High | | `aze` (`azb` & `azj`) | Azerbaijani (South & North) | Low | | `bel` | Belarusian | Mid | | `ben` | Bengali | Mid | | `bjn` | Banjar | Low | | `bul` | Bulgarian | Mid | | `cat` | Catalan | High | | `ceb` | Cebuano | Mid | | `ces` | Czech | High | | `cym` | Welsh | Low | | `dan` | Danish | Mid | | `deu` | German | High | | `ell` | Greek | Mid | | `eng` | English | High | | `epo` | Esperanto | Low | | `est` | Estonian | Mid | | `eus` | Basque | High | | `fin` | Finnish | High | | `fra` | French | High | | `gla` | Scottish Gaelic | Low | | `gle` | Irish | Low | | `glg` | Galician | Mid | | `guj` | Gujarati | Low | | `hat` | Haitian Creole | Low | | `hau` | Hausa | Low | | `heb` | Hebrew | Mid | | `hin` | Hindi | High | | `hun` | Hungarian | High | | `hye` | Armenian | Low | | `ibo` | Igbo | Low | | `ind` | Indonesian | Mid | | `isl` | Icelandic | Low | | `ita` | Italian | High | | `jav` | Javanese | Low | | `jpn` | Japanese | High | | `kan` | Kannada | Low | | `kas` | Kashmiri | Low | | `kat` | Georgian | Mid | | `kau` (`knc`) | Kanuri (Central) | Low | | `kaz` | Kazakh | Mid | | `khm` | Khmer | Low | | `kir` | Kyrgyz | Low | | `kor` | Korean | High | | `kur` (`ckb` & `kmr`) | Kurdish (Central & Northern) | Low | | `lao` | Lao | Low | | `lav` (`lvs`) | Latvian (Standard) | Mid | | `lit` | Lithuanian | Mid | | `ltz` | Luxembourgish | Low | | `mal` | Malayalam | Low | | `mar` | Marathi | Low | | `min` | Minangkabau | Low | | `mkd` | Macedonian | Low | | `mlg` (`plt`) | Malagasy (Plateau) | Low | | `mlt` | Maltese | Low | | `mni` | Manipuri | Low | | `mon` (`khk`) | Mongolian (Khalkha) | Low | | `mri` | Maori | Low | | `msa` (`zsm`) | Malay (Standard) | Mid | | `mya` | Burmese | Low | | `nep` (`npi`) | Nepali | Low | | `nld` | Dutch | High | | `nor` (`nno` & `nob`) | Norwegian (Nynorsk & Bokmål) | Low | | `nso` | Northern Sotho | Low | | `pes` | Persian | High | | `pol` | Polish | High | | `por` | Portuguese | High | | `pus` (`pbt`) | Pashto (Southern) | Low | | `ron` | Romanian | Mid | | `rus` | Russian | High | | `sin` | Sinhala | Low | | `slk` | Slovak | Mid | | `slv` | Slovenian | Mid | | `smo` | Samoan | Low | | `sna` | Shona | Low | | `snd` | Sindhi | Low | | `som` | Somali | Low | | `sot` | Southern Sotho | Low | | `spa` | Spanish | High | | `sqi` (`als`) | Albanian (Tosk) | Low | | `srp` | Serbian | High | | `sun` | Sundanese | Low | | `swa` (`swh`) | Swahili (Coastal) | Low | | `swe` | Swedish | High | | `tam` | Tamil | Mid | | `taq` | Tamasheq | Low | | `tel` | Telugu | Low | | `tgk` | Tajik | Low | | `tha` | Thai | Mid | | `tur` | Turkish | High | | `ukr` | Ukrainian | Mid | | `urd` | Urdu | Mid | | `uzb` (`uzn`) | Uzbek (Nothern) | Mid | | `vie` | Vietnamese | High | | `xho` | Xhosa | Low | | `yid` (`ydd`) | Yiddish (Eastern) | Low | | `yor` | Yoruba | Low | | `zho` (+ `yue`) | Chinese (Simplified & Cantonese) | High | | `zul` | Zulu | Low | </details> <details> <summary> <b>dolly-human-edited</b> </summary> | ISO Code | Language | Resources | |----------|----------|-----------| | `arb` | Arabic | High | | `fra` | French | High | | `hin` | Hindi | High | | `rus` | Russian | High | | `spa` | Spanish | High | | `srp` | Serbian | High | </details> <br> # Motivations & Intentions - **Curation Rationale:** This evaluation suite is tailored to test the generation quality of multilingual models, with the aim of balancing language coverage and human-sourced quality. It covers prompts originally written in each language, as well as English-centric translated, and manually curated or edited prompts for a linguistically broad, but rich testbed. The list of languages was initially established from mT5 and aligned with the annotators’ language list and the NLLB translation model. # Known Limitations - **Translation Quality:** Note that the expressiveness of the `dolly-machine-translated` subset is limited by the quality of the translation model and may adversely impact an estimate of ability in languages where translations are not adequate. If this subset is used for testing, we recommend it be paired and reported with the professionally post-edited `dolly-human-edited` subset or the `aya-human-annotated` set, which, while covering only 7 languages, is entirely created by proficient target language speakers. --- # Additional Information ## Provenance - **Methods Used:** combination of original annotations by volunteers, automatic translation, and post-editing of translations by professional annotators. - **Methodology Details:** - *Source:* Original annotations from Aya dataset along with translations and post-edits of Dolly dataset - *Platform:* [Aya Annotation Platform](https://aya.for.ai/) - *Dates of Collection:* May 2023 - Dec 2023 ## Dataset Version and Maintenance - **Maintenance Status:** Actively Maintained - **Version Details:** - *Current version:* 1.0 - *Last Update:* 02/2024 - *First Release:* 02/2024 - **Maintenance Plan:** No updates planned. ## Authorship - **Publishing Organization:** [Cohere Labs](https://cohere.com/research) - **Industry Type:** Not-for-profit - Tech - **Contact Details:** https://aya.for.ai/ ## Licensing Information This dataset can be used for any purpose, whether academic or commercial, under the terms of the [Apache 2.0](https://opensource.org/license/apache-2-0) License. ## Citation Information ```bibtex @misc{singh2024aya, title={Aya Dataset: An Open-Access Collection for Multilingual Instruction Tuning}, author={Shivalika Singh and Freddie Vargus and Daniel Dsouza and Börje F. Karlsson and Abinaya Mahendiran and Wei-Yin Ko and Herumb Shandilya and Jay Patel and Deividas Mataciunas and Laura OMahony and Mike Zhang and Ramith Hettiarachchi and Joseph Wilson and Marina Machado and Luisa Souza Moura and Dominik Krzemiński and Hakimeh Fadaei and Irem Ergün and Ifeoma Okoh and Aisha Alaagib and Oshan Mudannayake and Zaid Alyafeai and Vu Minh Chien and Sebastian Ruder and Surya Guthikonda and Emad A. Alghamdi and Sebastian Gehrmann and Niklas Muennighoff and Max Bartolo and Julia Kreutzer and Ahmet Üstün and Marzieh Fadaee and Sara Hooker}, year={2024}, eprint={2402.06619}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
SoftACE/StorySeek
SoftACE
2025-06-16T07:53:41Z
124
1
[ "language:en", "license:mit", "size_categories:1K<n<10K", "modality:text", "arxiv:2503.13279", "region:us", "Requirements", "Agile" ]
[]
2025-03-11T02:54:33Z
0
--- license: mit language: - en tags: - Requirements - Agile size_categories: - 1K<n<10K --- # Dataset: StorySeek-V1 [paper](https://arxiv.org/abs/2503.13279) ## Dataset Overview The StorySeek dataset is initially designed for the evaluation of goal-driven requirements elicitation and our proposing method [Goal2Story](https://github.com/SoftACE-Lab/goal2story). It comprises 1,005 records, each containing parsed information from detailed **Impact Mapping-Result** and **Project-Info**, as previously described. These records are derived from 10 well-known agile projects on GitLab, which were curated by NEODATASET. The whole dataset is created by a Semi-automatic Dataset Construction method proposed by our paper. Each datapoint contains the IM-Result and project information. Specifically, IM-Result consists of five key components: **goal**, **actor**, **impact**, **deliverable**, and **user story**, where the user story explicitly details the actor, action, and expected outcome; and the project information includes **background**, **problems**, and **solutions**. The expected contribution is that this dataset can assist research and industry on requirements elicitation. **Though the StorySeek was initially designed for the evaluation of our Goal2Story system, it also includes elements relevant to other software engineering aspects, which makes it possible to explore new findings in other studies.** You can find more details about our Goal2Story on this github link.[<https://github.com/SoftACE-Lab/goal2story>] ## Column Explanations 1. **IM-Result Columns:** - **Goal:** The goal defines the purpose of the initiative by answering why we are doing this. It should be a single concise sentence. - **Actor:** Actors are individuals or groups who can influence the outcome by enabling or obstructing the goal. - **Impact:** Impacts describe the behavioral changes needed from the actors to achieve the goal or potential obstacles they might create. Impacts must be expressed as a change in behavior or action. - **Deliverable:** Deliverables are the specific features or activities implemented to support the required impacts. The deliverable must directly resolve the problem described in the impact. - **User Story:** A user story is a concise requirement that describes an actor’s action and the expected outcome within a system. Ensure there is a causal link between **Goal** and **User Story**. 2. **Project Information Columns:** - **Background:** Project basic description. - **Problems:** Current problems described in the issue. - **Solutions:** Real-world solutions to these problems. ## Project Info | # | ID | Project Name | Description | URL | Count | |-----|----------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------| | 1 | 250833 | GitLab Runner | GitLab Runner is an application that works with GitLab CI/CD to run jobs in a pipeline. | [GitLab Runner](https://gitlab.com/gitlab-org/gitlab-runner) | 12 | | 2 | 3828396 | GitLab Charts | The gitlab chart is the best way to operate GitLab on Kubernetes. It contains all the required components to get started, and can scale to large deployments. | [GitLab Charts](https://gitlab.com/gitlab-org/charts/gitlab) | 13 | | 3 | 6206924 | Tildes | Tildes is an open-source, community-driven social platform that fosters thoughtful discussions and quality content sharing while prioritizing user privacy and minimal distractions. | [Tildes](https://gitlab.com/tildes/tildes) | 33 | | 4 | 28644964 | Free Pascal Compiler | Free Pascal is a mature, versatile, open source Pascal compiler. It can target many processor architectures: Intel x86 (16 and 32 bit), AMD64/x86-64, PowerPC, PowerPC64, SPARC, SPARC64, ARM, AArch64, MIPS, Motorola 68k, AVR, and the JVM. | [Free Pascal Compiler](https://gitlab.com/freepascal.org/fpc/source) | 102 | | 5 | 5261717 | GitLab VSCode Extension | The GitLab Workflow extension integrates GitLab into Visual Studio Code. | [GitLab VSCode Extension](https://gitlab.com/gitlab-org/gitlab-vscode-extension) | 104 | | 6 | 734943 | GitLab Pages | GitLab Pages publishes static websites directly from a repository in GitLab. | [GitLab Pages](https://gitlab.com/gitlab-org/gitlab-pages) | 112 | | 7 | 28419588 | Lazarus | Lazarus is a Rapid Application Development Tool for Free Pascal. It comes with the LCL – Lazarus component library, which contains platform-independent visual components like buttons, windows, checkboxes, treeviews, and many more. | [Lazarus](https://gitlab.com/freepascal.org/lazarus/lazarus) | 140 | | 8 | 2009901 | Gitaly | Gitaly is a Git RPC service for handling all the Git calls made by GitLab. | [Gitaly](https://gitlab.com/gitlab-org/gitaly) | 160 | | 9 | 14052249 | Mythic Table | Mythic Table is a virtual tabletop application for playing games with your friends online. | [Mythic Table](https://gitlab.com/mythicteam/mythictable) | 163 | | 10 | 12584701 | StackGres | StackGres is a full-stack PostgreSQL distribution for Kubernetes, packed into an easy deployment unit. It comes with a carefully selected and tuned set of surrounding PostgreSQL components. | [StackGres](https://gitlab.com/ongresinc/stackgres) | 166 | ``` @misc{zou2025goal2storymultiagentfleetbased, title={Goal2Story: A Multi-Agent Fleet based on Privately Enabled sLLMs for Impacting Mapping on Requirements Elicitation}, author={Xinkai Zou and Yan Liu and Xiongbo Shi and Chen Yang}, year={2025}, eprint={2503.13279}, archivePrefix={arXiv}, primaryClass={cs.SE}, url={https://arxiv.org/abs/2503.13279}, } ```
abhinav302019/olympiad_data_295
abhinav302019
2025-03-05T15:27:05Z
13
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-05T15:27:01Z
0
--- dataset_info: features: - name: problem dtype: string - name: Known_Solution dtype: string - name: Known_Answer dtype: string - name: Generated_Solution dtype: string - name: Generated_Answer dtype: string - name: Judge_Evaluation dtype: string - name: Judge_Rating dtype: string - name: Judge_Justification dtype: string splits: - name: train num_bytes: 38966 num_examples: 10 download_size: 34167 dataset_size: 38966 configs: - config_name: default data_files: - split: train path: data/train-* ---
TTA01/redteaming-attack-type
TTA01
2025-05-27T05:46:44Z
0
0
[ "language:en", "size_categories:1K<n<10K", "format:csv", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-13T08:57:12Z
0
--- language: - en --- # Annotated version of DEFCON 31 Generative AI Red Teaming dataset with additional labels for attack types. This dataset is an extended version of the [DEFCON31 Generative AI Red Teaming dataset](https://github.com/humane-intelligence/ai_village_defcon_grt_data), released by Humane Intelligence. Our team conducted additional labeling on the accepted attack samples to annotate: - **Attack Targets** (e.g., gender, race, age, political orientation) → tta01/redteaming-attack-target - **Attack Types** (e.g., question, request, build-up, scenario assumption, misinformation injection) The purpose of this extended annotation is to better understand: - Which types of individuals or groups are most vulnerable to LLM attacks - What kinds of prompting strategies are most effective in eliciting harmful outputs > ⚠️ This dataset is shared for non-commercial, academic research purposes only. > ## 📊 Dataset Contents - 2,673 attack samples (from accepted DEFCON31 entries) - 2 sets of annotations per sample: - `attack_target`: 7 superclasses and 19 subclasses - `attack_type`: 10 binary-labeled prompting strategies ### 📄 Related Report This dataset was analyzed in the following technical report (Korean), to be published on TTA ## 📄 License This dataset is distributed under the [Mozilla Public License v2.0](https://www.mozilla.org/en-US/MPL/2.0/), in accordance with the original dataset license. All annotations are provided under the same terms. ### 🏢 Research Institution and Contributors This dataset was developed by the **Center for Trustworthy AI** at the **Telecommunications Technology Association (TTA)**, South Korea. **Lead Researcher** - Dr. Yeajin Shin (Center for Trustworthy AI, TTA) **Collaborating Researchers** - Prof. Kyungsik Han (Hanyang University) - Taehyung Noh (Hanyang University) - Mingon Jeong (Hanyang University) ## 🙏 Acknowledgements This work was supported by the Ministry of Science and ICT (MSIT) of Korea, as part of the “Establishing the Foundation of AI Trustworthiness” project, conducted by TTA. We gratefully acknowledge the original organizers of the Generative AI Red Teaming Challenge: - Dr. Rumman Chowdhury and Jutta Williams (Humane Intelligence) - Sven Cattell (AI Village) - Austin Carson (Seed AI)
srpone/gensmo-product-images
srpone
2025-02-10T11:45:20Z
16
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-24T11:01:41Z
0
--- dataset_info: features: - name: conversations list: - name: from dtype: string - name: value dtype: string - name: images dtype: image splits: - name: train num_bytes: 207343378.0 num_examples: 979 download_size: 202485100 dataset_size: 207343378.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
FlippyDora/amc23_Qwen2-7B-Instruct_n8
FlippyDora
2025-02-09T17:51:02Z
15
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-09T17:51:00Z
0
--- dataset_info: features: - name: question dtype: string - name: answer dtype: float64 - name: outputs list: - name: label dtype: int64 - name: output dtype: string - name: result dtype: string splits: - name: train num_bytes: 684746 num_examples: 40 download_size: 235405 dataset_size: 684746 configs: - config_name: default data_files: - split: train path: data/train-* ---
SalzanoAl/dataset_solana
SalzanoAl
2025-02-06T16:53:29Z
15
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-06T16:53:26Z
0
--- dataset_info: features: - name: vulnerability dtype: string - name: smart_contract dtype: string splits: - name: train num_bytes: 45185 num_examples: 30 download_size: 17338 dataset_size: 45185 configs: - config_name: default data_files: - split: train path: data/train-* ---
InLegal-AI-EXP/PredEx_Instruction-Tuning_Pred-Exp
InLegal-AI-EXP
2025-04-29T09:30:16Z
27
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-29T09:29:26Z
0
--- dataset_info: features: - name: Case Name dtype: string - name: Input dtype: string - name: Output dtype: string - name: Label dtype: int64 - name: Count dtype: int64 - name: Decision_Count dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 232437960 num_examples: 10961 - name: test num_bytes: 25910733 num_examples: 1217 download_size: 114980123 dataset_size: 258348693 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
Tricoteuses/declaration_des_droits_de_l_homme_et_du_citoyen
Tricoteuses
2025-02-10T13:21:58Z
21
1
[ "task_categories:text-generation", "task_categories:text2text-generation", "language:fr", "license:cc-by-4.0", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "legal", "text-generation", "conditional-text-generation" ]
[ "text-generation", "text2text-generation" ]
2025-02-10T12:12:41Z
0
--- pretty_name: Tricoteuses Déclaration des droits de l'homme et du citoyen Training Dataset configs: - config_name: default data_files: - path: data/*parquet split: train language: - fr task_categories: - text-generation - text2text-generation tags: - legal - text-generation - conditional-text-generation size_categories: - <1K license: cc-by-4.0 --- # Légifrance Legislative Text Dataset ## Dataset Description The Légifrance Legislative Text Dataset is a structured collection of French legislative and regulatory texts extracted from the [Légifrance platform](https://www.legifrance.gouv.fr/). This dataset provides machine-readable access to consolidated legal codes, with a particular focus on maintaining the integrity of French linguistic features while providing additional metadata and quality signals. The data in this dataset comes from the Git repository [Git Tricoteuses — La loi sous git - Déclaration du 26 août 1789 des droits de l'homme et du citoyen](https://git.tricoteuses.fr/declarations/declaration_du_26_aout_1789_des_droits_de_l_homme_et_du_citoyen) ### Languages French (fr) ## Intended Uses & Limitations ### Intended Uses - Legal text analysis and research - Natural Language Processing tasks on French legislative documents - Legal information retrieval systems - Analysis of French regulatory frameworks ### Limitations - Limited to French legislative texts - Dependent on the structure of source Légifrance documents - Quality of text extraction depends on the consistency of source markdown formatting ## Dataset Structure ### Data Fields - `source`: string - Source of the text (e.g., "Code de la sécurité sociale") - `id`: string - Unique identifier of the legislative text - `date_debut`: string - Corresponds to the effective date of the article. - `date_fin`: string - Indicates the date on which the article will be deleted or replaced. - `url`: string - Direct link to the text on Légifrance - `extra`: JSON string containing: - `État`: string - Status of the text - `Type`: string - Type of legislative text - `quality_signals`: JSON string containing: - `character_count`: Total number of characters - `word_count`: Total number of words - `text`: string - The main content of the legislative text ### Data Splits The dataset is provided as a single split without train/validation/test partitioning. ## Dataset Creation ### Source Data The data comes from the availability of legal texts as open data, retrieved by the [tricoteuses-legifrance](https://git.tricoteuses.fr/logiciels/tricoteuses-legifrance) project. The dataset is created from Markdown files containing French legislative texts, each with YAML front matter metadata. ## Considerations for Using the Data ### Social Impact - Improves accessibility to French legislative texts - Enables computational analysis of legal documents - Supports transparency in legal research ### Legal Considerations - Usage should comply with Légifrance terms of service - Attribution should be provided to the original source - Users should verify the current validity of legal texts ## Additional Information ### Dataset Curators This dataset is programmatically curated from official Légifrance sources. ### Licensing Information Users should refer to Légifrance's licensing terms for the original content. ### Citation Information When using this dataset, please cite both: 1. The original Légifrance source 2. This dataset processing implementation ### Contributions Contributions to improve the dataset processing can be made through the repository's issue tracker or pull requests.
maiurilorenzo/divina-commedia
maiurilorenzo
2024-12-28T14:08:40Z
102
1
[ "language:it", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-05T15:04:30Z
0
--- language: - it dataset_info: features: - name: volume dtype: string - name: canto dtype: string - name: tercet dtype: int64 - name: verse_number dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1182296 num_examples: 14233 download_size: 458870 dataset_size: 1182296 configs: - config_name: default data_files: - split: train path: data/train-* --- # Divina Commedia Dataset ## Overview The **Divina Commedia** (Divine Comedy) is an epic poem by Dante Alighieri, widely considered one of the greatest works of world literature. This dataset contains the text of the poem, organized into volumes, cantos, and verses. It is suitable for various natural language processing (NLP) tasks, such as text analysis, machine learning, and linguistic research. ## Dataset Structure The dataset is structured in a hierarchical format, with the following attributes: - **volume**: The name of the volume (e.g., Inferno, Purgatorio, Paradiso). - **canto**: The name of the canto (e.g., Canto I). - **tercet**: The number of the tercet (a group of three verses). - **verse_number**: The number of the verse within the tercet. - **text**: The actual text of the verse. - **text_length**: The length of the verse text in characters. ### Example Entry | volume | canto | tercet | verse_number | text |----------|-----------|---------|--------------|----------------------------------------- | Inferno | Canto I | 1 | 1 | Nel mezzo del cammin di nostra vita | Inferno | Canto I | 1 | 2 | mi ritrovai per una selva oscura, | Inferno | Canto I | 1 | 3 | ché la diritta via era smarrita. ## Usage To load the dataset using the `datasets` library from Hugging Face, you can use the following code: ```python from datasets import load_dataset dataset = load_dataset("maiurilorenzo/divina-commedia") # Display the first few entries print(dataset["train"].to_pandas().head())
mbodiai/ABB_PandG_20250401_154039
mbodiai
2025-04-17T06:31:19Z
55
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-17T06:31:17Z
0
--- dataset_info: features: - name: observation struct: - name: image dtype: image - name: instruction dtype: string - name: prompt dtype: string - name: action struct: - name: pose struct: - name: x dtype: float32 - name: y dtype: float32 - name: z dtype: float32 - name: roll dtype: float32 - name: pitch dtype: float32 - name: yaw dtype: float32 - name: grasp dtype: float32 - name: gripper_force dtype: int64 - name: state struct: - name: images struct: - name: camF dtype: image - name: camT dtype: image - name: depths struct: - name: camF dtype: image - name: camT dtype: image - name: world_objects dtype: string - name: gripper_pose sequence: float32 - name: reward dtype: float32 - name: metadata struct: - name: episode_idx dtype: int64 - name: step_idx dtype: int64 splits: - name: train num_bytes: 52481027.0 num_examples: 5 download_size: 29153109 dataset_size: 52481027.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
lscpku/RefCOCOg_rec
lscpku
2025-04-12T08:11:10Z
25
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-12T08:09:15Z
0
--- dataset_info: features: - name: answer dtype: string - name: question_id dtype: string - name: image dtype: image - name: question dtype: string - name: segmentation sequence: float64 - name: bbox sequence: float64 - name: iscrowd dtype: int64 - name: file_name dtype: string - name: image_width dtype: int64 - name: image_height dtype: int64 splits: - name: val num_bytes: 774015265.0 num_examples: 14432 - name: test num_bytes: 516800873.75 num_examples: 9602 download_size: 673226043 dataset_size: 1290816138.75 configs: - config_name: default data_files: - split: val path: data/val-* - split: test path: data/test-* ---
neelabh17/star-graph-deg-7-path-7-nodes-300_out_of_the_box_num_gen_100_Qwen2.5-3B-Instruct
neelabh17
2025-05-07T21:35:21Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-07T21:35:19Z
0
--- dataset_info: features: - name: index dtype: int64 - name: graph dtype: string - name: source dtype: string - name: destination dtype: string - name: path dtype: string - name: question dtype: string - name: response_0 dtype: string - name: answer_0 dtype: string - name: correct_0 dtype: int64 - name: response_1 dtype: string - name: answer_1 dtype: string - name: correct_1 dtype: int64 - name: response_2 dtype: string - name: answer_2 dtype: string - name: correct_2 dtype: int64 - name: response_3 dtype: string - name: answer_3 dtype: string - name: correct_3 dtype: int64 - name: response_4 dtype: string - name: answer_4 dtype: string - name: correct_4 dtype: int64 - name: response_5 dtype: string - name: answer_5 dtype: string - name: correct_5 dtype: int64 - name: response_6 dtype: string - name: answer_6 dtype: string - name: correct_6 dtype: int64 - name: response_7 dtype: string - name: answer_7 dtype: string - name: correct_7 dtype: int64 - name: response_8 dtype: string - name: answer_8 dtype: string - name: correct_8 dtype: int64 - name: response_9 dtype: string - name: answer_9 dtype: string - name: correct_9 dtype: int64 - name: response_10 dtype: string - name: answer_10 dtype: string - name: correct_10 dtype: int64 - name: response_11 dtype: string - name: answer_11 dtype: string - name: correct_11 dtype: int64 - name: response_12 dtype: string - name: answer_12 dtype: string - name: correct_12 dtype: int64 - name: response_13 dtype: string - name: answer_13 dtype: string - name: correct_13 dtype: int64 - name: response_14 dtype: string - name: answer_14 dtype: string - name: correct_14 dtype: int64 - name: response_15 dtype: string - name: answer_15 dtype: string - name: correct_15 dtype: int64 - name: response_16 dtype: string - name: answer_16 dtype: string - name: correct_16 dtype: int64 - name: response_17 dtype: string - name: answer_17 dtype: string - name: correct_17 dtype: int64 - name: response_18 dtype: string - name: answer_18 dtype: string - name: correct_18 dtype: int64 - name: response_19 dtype: string - name: answer_19 dtype: string - name: correct_19 dtype: int64 - name: response_20 dtype: string - name: answer_20 dtype: string - name: correct_20 dtype: int64 - name: response_21 dtype: string - name: answer_21 dtype: string - name: correct_21 dtype: int64 - name: response_22 dtype: string - name: answer_22 dtype: string - name: correct_22 dtype: int64 - name: response_23 dtype: string - name: answer_23 dtype: string - name: correct_23 dtype: int64 - name: response_24 dtype: string - name: answer_24 dtype: string - name: correct_24 dtype: int64 - name: response_25 dtype: string - name: answer_25 dtype: string - name: correct_25 dtype: int64 - name: response_26 dtype: string - name: answer_26 dtype: string - name: correct_26 dtype: int64 - name: response_27 dtype: string - name: answer_27 dtype: string - name: correct_27 dtype: int64 - name: response_28 dtype: string - name: answer_28 dtype: string - name: correct_28 dtype: int64 - name: response_29 dtype: string - name: answer_29 dtype: string - name: correct_29 dtype: int64 - name: response_30 dtype: string - name: answer_30 dtype: string - name: correct_30 dtype: int64 - name: response_31 dtype: string - name: answer_31 dtype: string - name: correct_31 dtype: int64 - name: response_32 dtype: string - name: answer_32 dtype: string - name: correct_32 dtype: int64 - name: response_33 dtype: string - name: answer_33 dtype: string - name: correct_33 dtype: int64 - name: response_34 dtype: string - name: answer_34 dtype: string - name: correct_34 dtype: int64 - name: response_35 dtype: string - name: answer_35 dtype: string - name: correct_35 dtype: int64 - name: response_36 dtype: string - name: answer_36 dtype: string - name: correct_36 dtype: int64 - name: response_37 dtype: string - name: answer_37 dtype: string - name: correct_37 dtype: int64 - name: response_38 dtype: string - name: answer_38 dtype: string - name: correct_38 dtype: int64 - name: response_39 dtype: string - name: answer_39 dtype: string - name: correct_39 dtype: int64 - name: response_40 dtype: string - name: answer_40 dtype: string - name: correct_40 dtype: int64 - name: response_41 dtype: string - name: answer_41 dtype: string - name: correct_41 dtype: int64 - name: response_42 dtype: string - name: answer_42 dtype: string - name: correct_42 dtype: int64 - name: response_43 dtype: string - name: answer_43 dtype: string - name: correct_43 dtype: int64 - name: response_44 dtype: string - name: answer_44 dtype: string - name: correct_44 dtype: int64 - name: response_45 dtype: string - name: answer_45 dtype: string - name: correct_45 dtype: int64 - name: response_46 dtype: string - name: answer_46 dtype: string - name: correct_46 dtype: int64 - name: response_47 dtype: string - name: answer_47 dtype: string - name: correct_47 dtype: int64 - name: response_48 dtype: string - name: answer_48 dtype: string - name: correct_48 dtype: int64 - name: response_49 dtype: string - name: answer_49 dtype: string - name: correct_49 dtype: int64 - name: response_50 dtype: string - name: answer_50 dtype: string - name: correct_50 dtype: int64 - name: response_51 dtype: string - name: answer_51 dtype: string - name: correct_51 dtype: int64 - name: response_52 dtype: string - name: answer_52 dtype: string - name: correct_52 dtype: int64 - name: response_53 dtype: string - name: answer_53 dtype: string - name: correct_53 dtype: int64 - name: response_54 dtype: string - name: answer_54 dtype: string - name: correct_54 dtype: int64 - name: response_55 dtype: string - name: answer_55 dtype: string - name: correct_55 dtype: int64 - name: response_56 dtype: string - name: answer_56 dtype: string - name: correct_56 dtype: int64 - name: response_57 dtype: string - name: answer_57 dtype: string - name: correct_57 dtype: int64 - name: response_58 dtype: string - name: answer_58 dtype: string - name: correct_58 dtype: int64 - name: response_59 dtype: string - name: answer_59 dtype: string - name: correct_59 dtype: int64 - name: response_60 dtype: string - name: answer_60 dtype: string - name: correct_60 dtype: int64 - name: response_61 dtype: string - name: answer_61 dtype: string - name: correct_61 dtype: int64 - name: response_62 dtype: string - name: answer_62 dtype: string - name: correct_62 dtype: int64 - name: response_63 dtype: string - name: answer_63 dtype: string - name: correct_63 dtype: int64 - name: response_64 dtype: string - name: answer_64 dtype: string - name: correct_64 dtype: int64 - name: response_65 dtype: string - name: answer_65 dtype: string - name: correct_65 dtype: int64 - name: response_66 dtype: string - name: answer_66 dtype: string - name: correct_66 dtype: int64 - name: response_67 dtype: string - name: answer_67 dtype: string - name: correct_67 dtype: int64 - name: response_68 dtype: string - name: answer_68 dtype: string - name: correct_68 dtype: int64 - name: response_69 dtype: string - name: answer_69 dtype: string - name: correct_69 dtype: int64 - name: response_70 dtype: string - name: answer_70 dtype: string - name: correct_70 dtype: int64 - name: response_71 dtype: string - name: answer_71 dtype: string - name: correct_71 dtype: int64 - name: response_72 dtype: string - name: answer_72 dtype: string - name: correct_72 dtype: int64 - name: response_73 dtype: string - name: answer_73 dtype: string - name: correct_73 dtype: int64 - name: response_74 dtype: string - name: answer_74 dtype: string - name: correct_74 dtype: int64 - name: response_75 dtype: string - name: answer_75 dtype: string - name: correct_75 dtype: int64 - name: response_76 dtype: string - name: answer_76 dtype: string - name: correct_76 dtype: int64 - name: response_77 dtype: string - name: answer_77 dtype: string - name: correct_77 dtype: int64 - name: response_78 dtype: string - name: answer_78 dtype: string - name: correct_78 dtype: int64 - name: response_79 dtype: string - name: answer_79 dtype: string - name: correct_79 dtype: int64 - name: response_80 dtype: string - name: answer_80 dtype: string - name: correct_80 dtype: int64 - name: response_81 dtype: string - name: answer_81 dtype: string - name: correct_81 dtype: int64 - name: response_82 dtype: string - name: answer_82 dtype: string - name: correct_82 dtype: int64 - name: response_83 dtype: string - name: answer_83 dtype: string - name: correct_83 dtype: int64 - name: response_84 dtype: string - name: answer_84 dtype: string - name: correct_84 dtype: int64 - name: response_85 dtype: string - name: answer_85 dtype: string - name: correct_85 dtype: int64 - name: response_86 dtype: string - name: answer_86 dtype: string - name: correct_86 dtype: int64 - name: response_87 dtype: string - name: answer_87 dtype: string - name: correct_87 dtype: int64 - name: response_88 dtype: string - name: answer_88 dtype: string - name: correct_88 dtype: int64 - name: response_89 dtype: string - name: answer_89 dtype: string - name: correct_89 dtype: int64 - name: response_90 dtype: string - name: answer_90 dtype: string - name: correct_90 dtype: int64 - name: response_91 dtype: string - name: answer_91 dtype: string - name: correct_91 dtype: int64 - name: response_92 dtype: string - name: answer_92 dtype: string - name: correct_92 dtype: int64 - name: response_93 dtype: string - name: answer_93 dtype: string - name: correct_93 dtype: int64 - name: response_94 dtype: string - name: answer_94 dtype: string - name: correct_94 dtype: int64 - name: response_95 dtype: string - name: answer_95 dtype: string - name: correct_95 dtype: int64 - name: response_96 dtype: string - name: answer_96 dtype: string - name: correct_96 dtype: int64 - name: response_97 dtype: string - name: answer_97 dtype: string - name: correct_97 dtype: int64 - name: response_98 dtype: string - name: answer_98 dtype: string - name: correct_98 dtype: int64 - name: response_99 dtype: string - name: answer_99 dtype: string - name: correct_99 dtype: int64 splits: - name: train num_bytes: 24165684 num_examples: 100 download_size: 8393730 dataset_size: 24165684 configs: - config_name: default data_files: - split: train path: data/train-* ---
tevien/ConsoleScreenshots_PS2Wii
tevien
2025-02-09T23:31:22Z
17
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-09T23:28:42Z
0
--- dataset_info: features: - name: __key__ dtype: string - name: __url__ dtype: string - name: game.txt dtype: string - name: jpg dtype: image - name: platform.txt dtype: string splits: - name: train num_bytes: 599043883.9118131 num_examples: 14919 download_size: 557075325 dataset_size: 599043883.9118131 configs: - config_name: default data_files: - split: train path: data/train-* ---
suul999922/x_dataset_10
suul999922
2025-01-26T23:06:18Z
53
0
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:question-answering", "task_categories:summarization", "task_categories:text-generation", "task_ids:sentiment-analysis", "task_ids:topic-classification", "task_ids:named-entity-recognition", "task_ids:language-modeling", "task_ids:text-scoring", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "task_ids:extractive-qa", "task_ids:news-articles-summarization", "multilinguality:multilingual", "source_datasets:original", "license:mit", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification", "token-classification", "question-answering", "summarization", "text-generation" ]
2025-01-26T19:35:29Z
0
--- license: mit multilinguality: - multilingual source_datasets: - original task_categories: - text-classification - token-classification - question-answering - summarization - text-generation task_ids: - sentiment-analysis - topic-classification - named-entity-recognition - language-modeling - text-scoring - multi-class-classification - multi-label-classification - extractive-qa - news-articles-summarization --- # Bittensor Subnet 13 X (Twitter) Dataset <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> ## Dataset Description - **Repository:** suul999922/x_dataset_10 - **Subnet:** Bittensor Subnet 13 - **Miner Hotkey:** 5FA9GTvGdN2CB2jRmRKMaczcoXiNRYuHwYaHABaW5y65o7ae ### Dataset Summary This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks. For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe). ### Supported Tasks The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs. For example: - Sentiment Analysis - Trend Detection - Content Analysis - User Behavior Modeling ### Languages Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation. ## Dataset Structure ### Data Instances Each instance represents a single tweet with the following fields: ### Data Fields - `text` (string): The main content of the tweet. - `label` (string): Sentiment or topic category of the tweet. - `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present. - `datetime` (string): The date when the tweet was posted. - `username_encoded` (string): An encoded version of the username to maintain user privacy. - `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present. ### Data Splits This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp. ## Dataset Creation ### Source Data Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines. ### Personal and Sensitive Information All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information. ## Considerations for Using the Data ### Social Impact and Biases Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population. ### Limitations - Data quality may vary due to the decentralized nature of collection and preprocessing. - The dataset may contain noise, spam, or irrelevant content typical of social media platforms. - Temporal biases may exist due to real-time collection methods. - The dataset is limited to public tweets and does not include private accounts or direct messages. - Not all tweets contain hashtags or URLs. ## Additional Information ### Licensing Information The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use. ### Citation Information If you use this dataset in your research, please cite it as follows: ``` @misc{suul9999222025datauniversex_dataset_10, title={The Data Universe Datasets: The finest collection of social media data the web has to offer}, author={suul999922}, year={2025}, url={https://huggingface.co/datasets/suul999922/x_dataset_10}, } ``` ### Contributions To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms. ## Dataset Statistics [This section is automatically updated] - **Total Instances:** 8601669 - **Date Range:** 2025-01-24T21:00:00Z to 2025-01-25T15:37:47Z - **Last Updated:** 2025-01-26T23:06:16Z ### Data Distribution - Tweets with hashtags: 17.97% - Tweets without hashtags: 82.03% ### Top 10 Hashtags For full statistics, please refer to the `stats.json` file in the repository. 1. #riyadh (70609) 2. #linglingkwonginqingdao (24914) 3. #welcomeormkorntoqd (21143) 4. #zelena (19714) 5. #thameposeriesep7 (16694) 6. #tiktok (14355) 7. #bbb25 (10914) 8. #republicday (10303) 9. #zonauang (8456) 10. #yoko1stfmxchangchun (8429) ## Update History | Date | New Instances | Total Instances | |------|---------------|-----------------| | 2025-01-26T23:06:16Z | 8601669 | 17203338 |
visheratin/laion-coco-nllb
visheratin
2024-04-11T16:36:31Z
629
43
[ "task_categories:image-to-text", "task_categories:translation", "language:ace", "language:acm", "language:acq", "language:aeb", "language:af", "language:ajp", "language:ak", "language:als", "language:am", "language:apc", "language:ar", "language:ars", "language:ary", "language:arz", "language:as", "language:ast", "language:awa", "language:ayr", "language:azb", "language:azj", "language:ba", "language:bm", "language:ban", "language:be", "language:bem", "language:bn", "language:bho", "language:bjn", "language:bo", "language:bs", "language:bug", "language:bg", "language:ca", "language:ceb", "language:cs", "language:cjk", "language:ckb", "language:crh", "language:cy", "language:da", "language:de", "language:dik", "language:dyu", "language:dz", "language:el", "language:en", "language:eo", "language:et", "language:eu", "language:ee", "language:fo", "language:fj", "language:fi", "language:fon", "language:fr", "language:fur", "language:fuv", "language:gaz", "language:gd", "language:ga", "language:gl", "language:gn", "language:gu", "language:ht", "language:ha", "language:he", "language:hi", "language:hne", "language:hr", "language:hu", "language:hy", "language:ig", "language:ilo", "language:id", "language:is", "language:it", "language:jv", "language:ja", "language:kab", "language:kac", "language:kam", "language:kn", "language:ks", "language:ka", "language:kk", "language:kbp", "language:kea", "language:khk", "language:km", "language:ki", "language:rw", "language:ky", "language:kmb", "language:kmr", "language:knc", "language:kg", "language:ko", "language:lo", "language:lij", "language:li", "language:ln", "language:lt", "language:lmo", "language:ltg", "language:lb", "language:lua", "language:lg", "language:luo", "language:lus", "language:lvs", "language:mag", "language:mai", "language:ml", "language:mar", "language:min", "language:mk", "language:mt", "language:mni", "language:mos", "language:mi", "language:my", "language:nl", "language:nn", "language:nb", "language:npi", "language:nso", "language:nus", "language:ny", "language:oc", "language:ory", "language:pag", "language:pa", "language:pap", "language:pbt", "language:pes", "language:plt", "language:pl", "language:pt", "language:prs", "language:quy", "language:ro", "language:rn", "language:ru", "language:sg", "language:sa", "language:sat", "language:scn", "language:shn", "language:si", "language:sk", "language:sl", "language:sm", "language:sn", "language:sd", "language:so", "language:st", "language:es", "language:sc", "language:sr", "language:ss", "language:su", "language:sv", "language:swh", "language:szl", "language:ta", "language:taq", "language:tt", "language:te", "language:tg", "language:tl", "language:th", "language:ti", "language:tpi", "language:tn", "language:ts", "language:tk", "language:tum", "language:tr", "language:tw", "language:tzm", "language:ug", "language:uk", "language:umb", "language:ur", "language:uzn", "language:vec", "language:vi", "language:war", "language:wo", "language:xh", "language:ydd", "language:yo", "language:yue", "language:zh", "language:zsm", "language:zu", "license:cc-by-nc-4.0", "size_categories:100K<n<1M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2309.01859", "doi:10.57967/hf/1006", "region:us" ]
[ "image-to-text", "translation" ]
2023-06-18T06:58:28Z
1
--- language: - ace - acm - acq - aeb - af - ajp - ak - als - am - apc - ar - ars - ary - arz - as - ast - awa - ayr - azb - azj - ba - bm - ban - be - bem - bn - bho - bjn - bo - bs - bug - bg - ca - ceb - cs - cjk - ckb - crh - cy - da - de - dik - dyu - dz - el - en - eo - et - eu - ee - fo - fj - fi - fon - fr - fur - fuv - gaz - gd - ga - gl - gn - gu - ht - ha - he - hi - hne - hr - hu - hy - ig - ilo - id - is - it - jv - ja - kab - kac - kam - kn - ks - ka - kk - kbp - kea - khk - km - ki - rw - ky - kmb - kmr - knc - kg - ko - lo - lij - li - ln - lt - lmo - ltg - lb - lua - lg - luo - lus - lvs - mag - mai - ml - mar - min - mk - mt - mni - mos - mi - my - nl - nn - nb - npi - nso - nus - ny - oc - ory - pag - pa - pap - pbt - pes - plt - pl - pt - prs - quy - ro - rn - ru - sg - sa - sat - scn - shn - si - sk - sl - sm - sn - sd - so - st - es - sc - sr - ss - su - sv - swh - szl - ta - taq - tt - te - tg - tl - th - ti - tpi - tn - ts - tk - tum - tr - tw - tzm - ug - uk - umb - ur - uzn - vec - vi - war - wo - xh - ydd - yo - yue - zh - zsm - zu license: cc-by-nc-4.0 size_categories: - 100K<n<1M task_categories: - image-to-text - translation pretty_name: LAION-COCO translated to 200 languages dataset_info: features: - name: id dtype: string - name: url dtype: string - name: eng_caption dtype: string - name: captions sequence: sequence: string - name: score dtype: float64 splits: - name: test num_bytes: 271360114 num_examples: 14906 - name: train num_bytes: 15986931307 num_examples: 878978 download_size: 10358151216 dataset_size: 16258291421 language_details: ace_Arab, ace_Latn, acm_Arab, acq_Arab, aeb_Arab, afr_Latn, ajp_Arab, aka_Latn, amh_Ethi, apc_Arab, arb_Arab, ars_Arab, ary_Arab, arz_Arab, asm_Beng, ast_Latn, awa_Deva, ayr_Latn, azb_Arab, azj_Latn, bak_Cyrl, bam_Latn, ban_Latn,bel_Cyrl, bem_Latn, ben_Beng, bho_Deva, bjn_Arab, bjn_Latn, bod_Tibt, bos_Latn, bug_Latn, bul_Cyrl, cat_Latn, ceb_Latn, ces_Latn, cjk_Latn, ckb_Arab, crh_Latn, cym_Latn, dan_Latn, deu_Latn, dik_Latn, dyu_Latn, dzo_Tibt, ell_Grek, eng_Latn, epo_Latn, est_Latn, eus_Latn, ewe_Latn, fao_Latn, pes_Arab, fij_Latn, fin_Latn, fon_Latn, fra_Latn, fur_Latn, fuv_Latn, gla_Latn, gle_Latn, glg_Latn, grn_Latn, guj_Gujr, hat_Latn, hau_Latn, heb_Hebr, hin_Deva, hne_Deva, hrv_Latn, hun_Latn, hye_Armn, ibo_Latn, ilo_Latn, ind_Latn, isl_Latn, ita_Latn, jav_Latn, jpn_Jpan, kab_Latn, kac_Latn, kam_Latn, kan_Knda, kas_Arab, kas_Deva, kat_Geor, knc_Arab, knc_Latn, kaz_Cyrl, kbp_Latn, kea_Latn, khm_Khmr, kik_Latn, kin_Latn, kir_Cyrl, kmb_Latn, kon_Latn, kor_Hang, kmr_Latn, lao_Laoo, lvs_Latn, lij_Latn, lim_Latn, lin_Latn, lit_Latn, lmo_Latn, ltg_Latn, ltz_Latn, lua_Latn, lug_Latn, luo_Latn, lus_Latn, mag_Deva, mai_Deva, mal_Mlym, mar_Deva, min_Latn, mkd_Cyrl, plt_Latn, mlt_Latn, mni_Beng, khk_Cyrl, mos_Latn, mri_Latn, zsm_Latn, mya_Mymr, nld_Latn, nno_Latn, nob_Latn, npi_Deva, nso_Latn, nus_Latn, nya_Latn, oci_Latn, gaz_Latn, ory_Orya, pag_Latn, pan_Guru, pap_Latn, pol_Latn, por_Latn, prs_Arab, pbt_Arab, quy_Latn, ron_Latn, run_Latn, rus_Cyrl, sag_Latn, san_Deva, sat_Beng, scn_Latn, shn_Mymr, sin_Sinh, slk_Latn, slv_Latn, smo_Latn, sna_Latn, snd_Arab, som_Latn, sot_Latn, spa_Latn, als_Latn, srd_Latn, srp_Cyrl, ssw_Latn, sun_Latn, swe_Latn, swh_Latn, szl_Latn, tam_Taml, tat_Cyrl, tel_Telu, tgk_Cyrl, tgl_Latn, tha_Thai, tir_Ethi, taq_Latn, taq_Tfng, tpi_Latn, tsn_Latn, tso_Latn, tuk_Latn, tum_Latn, tur_Latn, twi_Latn, tzm_Tfng, uig_Arab, ukr_Cyrl, umb_Latn, urd_Arab, uzn_Latn, vec_Latn, vie_Latn, war_Latn, wol_Latn, xho_Latn, ydd_Hebr, yor_Latn, yue_Hant, zho_Hans, zho_Hant, zul_Latn configs: - config_name: default data_files: - split: test path: data/test-* - split: train path: data/train-* --- # LAION COCO translated into 200 languages This dataset contains the samples of the [LAION-COCO](https://huggingface.co/datasets/laion/laion-coco) dataset translated to 200 languages using the largest [NLLB-200 model](https://huggingface.co/facebook/nllb-200-3.3B) (3.3B parameters). ## Fields description 1. `id` - unique ID of the image. 2. `url` - original URL of the image from the LAION-COCO dataset. 3. `eng_caption` - original English caption from the LAION-COCO dataset. 4. `captions` - a list of captions translated to the languages from the Flores 200 dataset. Every item in the list is a list where the first element is a BCP-47 language code, and the second one is a caption in this language. The list of all language codes for the Flores 200 dataset can be found [here](https://github.com/facebookresearch/flores/blob/main/flores200/README.md#languages-in-flores-200). 5. `score` - aesthetic score generated using [LAION aesthetic predictor](https://github.com/christophschuhmann/improved-aesthetic-predictor/). The images in the dataset have the score of 4.5+. ## Images The dataset was filtered to contain only working image URLs. However, the availability may change in the future. Because of that, all images from this dataset are available at [https://nllb-data.com/](https://nllb-data.com/). To get the image, use the following format: ``` https://nllb-data.com/{id}.jpg ``` ## Paper The dataset was used to train the models in the paper: "[NLLB-CLIP - train performant multilingual image retrieval model on a budget](https://arxiv.org/abs/2309.01859)".
knarayan/cloud_posture_checks_name_and_desc
knarayan
2025-02-14T21:14:50Z
16
0
[ "license:apache-2.0", "size_categories:1K<n<10K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-14T21:14:36Z
0
--- license: apache-2.0 ---
paolordls/crosslg-contaminated-benchmark-qa-en-og-sm-1
paolordls
2024-11-26T16:42:35Z
15
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-26T14:48:46Z
0
--- dataset_info: features: - name: fake_news dtype: string - name: scenario_id dtype: int64 - name: real_news dtype: string - name: fake_keyword dtype: string - name: real_question dtype: string - name: fake_question dtype: string - name: real_answer dtype: string - name: fake_answer dtype: string splits: - name: train num_bytes: 80307 num_examples: 10 download_size: 99991 dataset_size: 80307 configs: - config_name: default data_files: - split: train path: data/train-* ---
raresense/SAKS
raresense
2025-06-22T08:54:47Z
25
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-22T08:51:58Z
0
--- dataset_info: features: - name: target dtype: image: decode: false - name: ghost_image dtype: image: decode: false - name: mask dtype: image: decode: false - name: prompt dtype: string splits: - name: train num_bytes: 123092492.327 num_examples: 2009 download_size: 94394140 dataset_size: 123092492.327 configs: - config_name: default data_files: - split: train path: data/train-* ---
OwkinZero/MOSAIC-bladder-SICER-allpop-split
OwkinZero
2025-06-23T14:07:34Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-23T14:07:30Z
0
--- dataset_info: features: - name: question dtype: string - name: options dtype: string - name: answer dtype: string - name: question_type dtype: string - name: metadata dtype: string - name: correct_cell_type dtype: string splits: - name: train num_bytes: 322849.3532557408 num_examples: 2034 - name: test num_bytes: 80791.70147845235 num_examples: 509 download_size: 46857 dataset_size: 403641.05473419314 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
taln-ls2n/termith-eval
taln-ls2n
2022-09-23T07:49:04Z
83
1
[ "task_categories:text-generation", "annotations_creators:unknown", "language_creators:unknown", "multilinguality:multilingual", "language:fr", "license:cc-by-4.0", "size_categories:n<1K", "region:us" ]
[ "text-mining", "text-generation" ]
2022-04-22T09:09:23Z
0
--- annotations_creators: - unknown language_creators: - unknown language: - fr license: cc-by-4.0 multilinguality: - multilingual task_categories: - text-mining - text-generation task_ids: - keyphrase-generation - keyphrase-extraction size_categories: - n<1K pretty_name: TermITH-Eval --- # TermITH-Eval Benchmark Dataset for Keyphrase Generation ## About TermITH-Eval is a dataset for benchmarking keyphrase extraction and generation models. The dataset is composed of 400 abstracts of scientific papers in French collected from the FRANCIS and PASCAL databases of the French [Institute for Scientific and Technical Information (Inist)](https://www.inist.fr/). Keyphrases were annotated by professional indexers in an uncontrolled setting (that is, not limited to thesaurus entries). Details about the dataset can be found in the original paper [(Bougouin et al., 2016)][bougouin-2016]. Reference (indexer-assigned) keyphrases are also categorized under the PRMU (<u>P</u>resent-<u>R</u>eordered-<u>M</u>ixed-<u>U</u>nseen) scheme as proposed in [(Boudin and Gallina, 2021)][boudin-2021]. Present reference keyphrases are also ordered by their order of apparition in the concatenation of title and abstract. Text pre-processing (tokenization) is carried out using `spacy` (`fr_core_news_sm` model) with a special rule to avoid splitting words with hyphens (e.g. graph-based is kept as one token). Stemming (Snowball stemmer implementation for french provided in `nltk`) is applied before reference keyphrases are matched against the source text. Details about the process can be found in `prmu.py`. ## Content and statistics The dataset contains the following test split: | Split | # documents | #words | # keyphrases | % Present | % Reordered | % Mixed | % Unseen | | :--------- |------------:|-----------:|-------------:|----------:|------------:|--------:|---------:| | Test | 399 | 156.9 | 11.81 | 40.60 | 7.32 | 19.28 | 32.80 | The following data fields are available : - **id**: unique identifier of the document. - **title**: title of the document. - **abstract**: abstract of the document. - **keyphrases**: list of reference keyphrases. - **prmu**: list of <u>P</u>resent-<u>R</u>eordered-<u>M</u>ixed-<u>U</u>nseen categories for reference keyphrases. - **category**: category of the document, i.e. chimie (chemistry), archeologie (archeology), linguistique (linguistics) and scienceInfo (information sciences). ## References - (Bougouin et al., 2016) Adrien Bougouin, Sabine Barreaux, Laurent Romary, Florian Boudin, and Béatrice Daille. 2016. [TermITH-Eval: a French Standard-Based Resource for Keyphrase Extraction Evaluation][bougouin-2016]. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16), pages 1924–1927, Portorož, Slovenia. European Language Resources Association (ELRA).Language Processing, pages 543–551, Nagoya, Japan. Asian Federation of Natural Language Processing. - (Boudin and Gallina, 2021) Florian Boudin and Ygor Gallina. 2021. [Redefining Absent Keyphrases and their Effect on Retrieval Effectiveness][boudin-2021]. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 4185–4193, Online. Association for Computational Linguistics. [bougouin-2016]: https://aclanthology.org/L16-1304/ [boudin-2021]: https://aclanthology.org/2021.naacl-main.330/
espressovi/VALUED
espressovi
2025-01-28T19:38:00Z
31
1
[ "license:cc-by-4.0", "region:us" ]
[]
2025-01-28T07:44:47Z
0
--- license: cc-by-4.0 --- # VALUED - Vision and Logical Understanding Evaluation Dataset. --- This repository contains dataset associated with the paper at (https://data.mlr.press/assets/pdf/v01-13.pdf). View samples from the dataset at the [dataset page](https://espressovi.github.io/VALUED). ## Authors - [Soumadeep Saha](https://www.isical.ac.in/~soumadeep.saha_r) - [Saptarshi Saha](https://openreview.net/profile?id=~Saptarshi_Saha1) - [Utpal Garain](https://www.isical.ac.in/~utpal). ## Abstract Starting with early successes in computer vision tasks, deep learning based techniques have since overtaken state of the art approaches in a multitude of domains. However, it has been demonstrated time and again that these techniques fail to capture semantic context and logical constraints, instead often relying on spurious correlations to arrive at the answer. Since application of deep learning techniques to critical scenarios are dependent on adherence to domain specific constraints, several attempts have been made to address this issue. One limitation holding back a thorough exploration of this area, is a lack of suitable datasets which feature a rich set of rules. In order to address this, we present the VALUE (Vision And Logical Understanding Evaluation) Dataset, consisting of 200,000+ annotated images and an associated rule set, based on the popular board game - chess. The curated rule set considerably constrains the set of allowable predictions, and are designed to probe key semantic abilities like localization and enumeration. Alongside standard metrics, additional metrics to measure performance with regards to logical consistency is presented. We analyze several popular and state of the art vision models on this task, and show that, although their performance on standard metrics are laudable, they produce a plethora of incoherent results, indicating that this dataset presents a significant challenge for future works. --- ## Usage ### Download data - The generated train/test set along with all labels can be found [here](https://zenodo.org/records/10607059). - The DOI for the dataset is 10.5281/zenodo.8278014. ## Cite If you find our work useful, please cite: ``` @article{saha2024valued, title={{VALUED} - Vision and Logical Understanding Evaluation Dataset}, author={Soumadeep Saha and Saptarshi Saha and Utpal Garain}, journal={Journal of Data-centric Machine Learning Research}, year={2024}, url={https://openreview.net/forum?id=nS9oxKyy9u} } ```
raphus/clinical_trials_gov_COMP631_project
raphus
2025-03-20T22:32:54Z
60
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-20T20:59:48Z
0
--- dataset_info: features: - name: nctId dtype: string - name: relatedConditions dtype: string - name: officialTitle dtype: string - name: overallStatus dtype: string - name: briefSummary dtype: string - name: eligibilityCriteria dtype: string - name: sponsor dtype: string - name: studyType dtype: string - name: allocation dtype: string - name: interventionModel dtype: string - name: acronym dtype: string - name: centralContacts dtype: string splits: - name: train num_bytes: 54578663 num_examples: 18995 download_size: 28857143 dataset_size: 54578663 configs: - config_name: default data_files: - split: train path: data/train-* ---
Akshitha-M/colloquial-dataset
Akshitha-M
2025-02-19T18:20:21Z
13
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-19T18:18:02Z
0
--- dataset_info: features: - name: English Text dtype: string - name: Colloquial Text dtype: string splits: - name: train num_bytes: 705.3333333333334 num_examples: 8 - name: test num_bytes: 352.6666666666667 num_examples: 4 download_size: 4359 dataset_size: 1058.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
saatwiksy/PR-Reports
saatwiksy
2024-11-16T03:23:05Z
15
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-16T03:14:32Z
0
--- dataset_info: features: - name: image dtype: image - name: report dtype: string splits: - name: train num_bytes: 28371914.0 num_examples: 121 download_size: 28313863 dataset_size: 28371914.0 configs: - config_name: default data_files: - split: train path: data/train-* --- ## Overview This dataset is a curated collection of 121 panoramic dental radiographs, each paired with a clinically validated report prepared by a maxillofacial radiologist. The dataset captures a wide range of dental conditions, making it highly specialized for training vision-language models in dental diagnostics. Link to the model: [[Model](https://huggingface.co/saatwiksy/PR-LLaVA-34b)]
autoevaluate/autoeval-staging-eval-project-17e9fcc1-7454810
autoevaluate
2022-06-25T09:35:01Z
17
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "autotrain", "evaluation" ]
[]
2022-06-25T09:34:17Z
0
--- type: predictions tags: - autotrain - evaluation datasets: - ag_news eval_info: task: multi_class_classification model: mrm8488/distilroberta-finetuned-age_news-classification metrics: [] dataset_name: ag_news dataset_config: default dataset_split: test col_mapping: text: text target: label --- # Dataset Card for AutoTrain Evaluator This repository contains model predictions generated by [AutoTrain](https://huggingface.co/autotrain) for the following task and dataset: * Task: Multi-class Text Classification * Model: mrm8488/distilroberta-finetuned-age_news-classification * Dataset: ag_news To run new evaluation jobs, visit Hugging Face's [automatic model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator). ## Contributions Thanks to [@lewtun](https://huggingface.co/lewtun) for evaluating this model.
copycat-project/rag_assets_10292024_filtered_v1
copycat-project
2024-10-29T20:07:58Z
23
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-29T20:06:15Z
0
--- dataset_info: features: - name: character_name dtype: string - name: character_id dtype: int32 - name: prompt dtype: string - name: image_id dtype: string - name: image dtype: image - name: cropped_image dtype: image - name: cropped_masked_image dtype: image - name: masked_image dtype: image - name: mask dtype: array2_d: shape: - 512 - 512 dtype: int32 - name: hqsam_cropped_masked_image dtype: image - name: hqsam_masked_image dtype: image - name: hqsam_mask dtype: array2_d: shape: - 512 - 512 dtype: int32 splits: - name: train num_bytes: 4796847466.0 num_examples: 1464 download_size: 1759402849 dataset_size: 4796847466.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
SKIML-ICL/astro_qa_nli_entity_t
SKIML-ICL
2025-06-19T03:53:23Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-19T03:23:15Z
0
--- dataset_info: features: - name: id dtype: int64 - name: question dtype: string - name: context dtype: string - name: answers sequence: string - name: answer_sentence dtype: string - name: ctxs list: - name: hasanswer dtype: bool - name: nli dtype: string - name: pid dtype: int64 - name: rank dtype: int64 - name: score dtype: float64 - name: text dtype: string - name: hasanswer dtype: bool - name: answerable dtype: string - name: entity_type dtype: string - name: entity_text dtype: string - name: entity_vector sequence: float64 - name: similar_entity dtype: string - name: random_entity dtype: string splits: - name: test num_bytes: 60307433 num_examples: 2173 download_size: 33354954 dataset_size: 60307433 configs: - config_name: default data_files: - split: test path: data/test-* ---
shylee/eval_BIDtest1
shylee
2025-05-13T19:34:51Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-05-13T14:39:23Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 1, "total_frames": 52, "total_tasks": 1, "total_videos": 3, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:1" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.FrontCam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.TopCam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.WristCam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
linrany/gsm_sample_90
linrany
2025-06-03T03:29:55Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-03T03:29:44Z
0
--- dataset_info: features: - name: id dtype: int64 - name: origin_question dtype: string - name: correct_answer dtype: string splits: - name: train num_bytes: 23966 num_examples: 90 download_size: 16964 dataset_size: 23966 configs: - config_name: default data_files: - split: train path: data/train-* ---
french-datasets/rntc_tmp-multitask-fr-clinical
french-datasets
2025-06-04T10:46:07Z
0
0
[ "task_categories:translation", "task_categories:text-classification", "language:fra", "region:us" ]
[ "translation", "text-classification" ]
2025-06-04T10:45:46Z
0
--- language: - fra viewer: false task_categories: - translation - text-classification --- Ce répertoire est vide, il a été créé pour améliorer le référencement du jeu de données [rntc/tmp-multitask-fr-clinical](https://huggingface.co/datasets/rntc/tmp-multitask-fr-clinical).
DeepNLP/ai-docs-agent
DeepNLP
2025-03-31T16:59:39Z
27
1
[ "license:mit", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-31T16:58:57Z
0
--- license: mit --- # AI Docs Agent Meta and Traffic Dataset in AI Agent Marketplace | AI Agent Directory | AI Agent Index from DeepNLP This dataset is collected from AI Agent Marketplace Index and Directory at http://www.deepnlp.org, which contains AI Agents's meta information such as agent's name, website, description, as well as the monthly updated Web performance metrics, including Google,Bing average search ranking positions, Github Stars, Arxiv References, etc. The dataset is helpful for AI researchers and practitioners to do analysis, write reports, monitor the trends and track the exponentially growth (though flat) of number of AI Agents in all fields. To add and list your agent to the Agent Index, please visit [AI Agent Directory](http://www.deepnlp.org/store/ai-agent), use the the workspace [http://www.deepnlp.org/workspace/my_ai_services](http://www.deepnlp.org/workspace/my_ai_services) or using python API To Search all agents, please use AI Agent Search Engine [Agent Search Engine](http://www.deepnlp.org/search/agent) [Github AI Agent Marketplace](https://github.com/AI-Agent-Hub/AI-Agent-Marketplace) [Pypi AI Agent Marketplace](https://pypi.org/project/ai-agent-marketplace/) ![AI Agent Marketplace Directory Search](https://raw.githubusercontent.com/AI-Agent-Hub/AI-Agent-Marketplace/refs/heads/main/docs/image_email_writing_agents.jpg) # Data Samples ## [stately ai](https://stately.ai/docs/agents) <details> ### website https://stately.ai/docs/agents ### Agent Page http://www.deepnlp.org/store/ai-agent/ai-docs/pub-stately-ai/stately-ai ### description An AI agent is an autonomous entity that observes an environment, decides what to do (based on its internal policy), and performs actions towards achieving ... ### category AI Docs ### tags </details> ## [docsai app](https://docsai.app/) <details> ### website https://docsai.app/ ### Agent Page http://www.deepnlp.org/store/ai-agent/ai-docs/pub-docsai-app/docsai-app ### description The AI Docs Companion you always wanted. Train your documents, chat with your documents, and create chatbots that solves queries for you and your users. ### category AI Docs ### tags </details> ## [echobase ai](https://echobase.ai/docs/ai-agents) <details> ### website https://echobase.ai/docs/ai-agents ### Agent Page http://www.deepnlp.org/store/ai-agent/ai-docs/pub-echobase-ai/echobase-ai ### description AI Agents are at the heart of the Echobase Platform. They allow users to create agents trained to accurately produce and analyze material using artificial ... ### category AI Docs ### tags </details> ## [docanalyzer ai](https://docanalyzer.ai/) <details> ### website https://docanalyzer.ai/ ### Agent Page http://www.deepnlp.org/store/ai-agent/ai-docs/pub-docanalyzer-ai/docanalyzer-ai ### description Set up intelligent agents to streamline complex document handling tasks. From automatic document sorting and data extraction to custom workflow integrations, ... ### category AI Docs ### tags </details> ## [play ai api](https://docs.play.ai/documentation/get-started/introduction) <details> ### website https://docs.play.ai/documentation/get-started/introduction ### Agent Page http://www.deepnlp.org/store/ai-agent/ai-docs/pub-play-ai-api/play-ai-api ### description Our API enables every business, every developer, every tinkerer to easily build capable and useful conversational AI voice Solutions. ### category AI Docs ### tags </details> ## [mistral ai](https://docs.mistral.ai/capabilities/agents/) <details> ### website https://docs.mistral.ai/capabilities/agents/ ### Agent Page http://www.deepnlp.org/store/ai-agent/ai-docs/pub-mistral-ai/mistral-ai ### description AI agents are autonomous systems powered by large language models (LLMs) that, given high-level instructions, can plan, use tools, carry out steps of processing ... ### category AI Docs ### tags </details> ## [anythingllm com](https://docs.anythingllm.com/agent/overview) <details> ### website https://docs.anythingllm.com/agent/overview ### Agent Page http://www.deepnlp.org/store/ai-agent/ai-docs/pub-anythingllm-com/anythingllm-com ### description AnythingLLM Products Resources Community The all-in-one AI application Everything great about AI in one desktop application. Chat with docs, use AI Agents, and more - full locally and offline. Downloa ### category AI Docs ### tags </details> ## [omniagentai org](https://docs.omniagentai.org/) <details> ### website https://docs.omniagentai.org/ ### Agent Page http://www.deepnlp.org/store/ai-agent/ai-docs/pub-omniagentai-org/omniagentai-org ### description These agents are designed to execute tasks, make decisions, and generate value autonomously within a decentralized ecosystem. Whether you need an AI agent to represent you online, … ### category AI Docs ### tags </details> ## [microsoft com](https://learn.microsoft.com/en-us/azure/ai-services/agents/) <details> ### website https://learn.microsoft.com/en-us/azure/ai-services/agents/ ### Agent Page http://www.deepnlp.org/store/ai-agent/ai-docs/pub-microsoft-com/microsoft-com ### description Trace Id is missing Microsoft Microsoft 365 Microsoft 365 Getting started Products Role-based agents For departments​ For industries Search Search Microsoft 365 No results Cancel All Microsoft Softwa ### category AI Docs ### tags </details> ## [bizagi](https://help.bizagi.com/platform/en/ai_agents_files_as_inputs.htm) <details> ### website https://help.bizagi.com/platform/en/ai_agents_files_as_inputs.htm ### Agent Page http://www.deepnlp.org/store/ai-agent/ai-docs/pub-bizagi/bizagi ### description You can upload files to AI Agents, enabling Bizagi's AI to provide quick insights and solutions based on their content. ### category AI Docs ### tags </details> ## [reworkd](https://docs.reworkd.ai/introduction) <details> ### website https://docs.reworkd.ai/introduction ### Agent Page http://www.deepnlp.org/store/ai-agent/ai-docs/pub-reworkd/reworkd ### description AgentGPT is an autonomous AI Agent platform that empowers users to create and deploy customizable autonomous AI agents directly in the browser. ### category AI Docs ### tags </details> ## [aws documentation](https://docs.aws.amazon.com/nova/latest/userguide/agents.html) <details> ### website https://docs.aws.amazon.com/nova/latest/userguide/agents.html ### Agent Page http://www.deepnlp.org/store/ai-agent/ai-docs/pub-aws-documentation/aws-documentation ### description An AI agent helps your end-users complete actions based on organization data and user input. Agents orchestrate interactions between foundation models (FMs), data sources, software … ### category AI Docs ### tags </details> ## [oneai com](https://docs.oneai.com/docs/one-agent) <details> ### website https://docs.oneai.com/docs/one-agent ### Agent Page http://www.deepnlp.org/store/ai-agent/ai-docs/pub-oneai-com/oneai-com ### description → → → This website uses cookies Essential Cookies (0) (0) Cookies required to enable basic website functionality. Functional Cookies ### category AI Docs ### tags </details> ## [agent ai](https://docs.agent.ai/welcome) <details> ### website https://docs.agent.ai/welcome ### Agent Page http://www.deepnlp.org/store/ai-agent/ai-docs/pub-agent-ai/agent-ai ### description Build advanced AI agents using an easy, extensible, no-code platform with data tools and access to frontier LLMS. ### category AI Docs ### tags </details> ## [kanverse ai](https://www.kanverse.ai/) <details> ### website https://www.kanverse.ai/ ### Agent Page http://www.deepnlp.org/store/ai-agent/ai-docs/pub-kanverse-ai/kanverse-ai ### description With Kanverse AI Agents, enterprises can seamlessly transition to "Zero-Touch" document processing workflows. By automating the processing, validation, and ... ### category AI Docs ### tags </details> ## [neon](https://neon.tech/docs/use-cases/ai-agents) <details> ### website https://neon.tech/docs/use-cases/ai-agents ### Agent Page http://www.deepnlp.org/store/ai-agent/ai-docs/pub-neon/neon ### description AI agents can now provision infrastructure, including databases. With AI agents already creating databases every few seconds, they are poised to manage a significant portion of the web's infrastructur ### category AI Docs ### tags </details> ## [agents land](https://docs.agents.land/mesh-by-distilled-ai) <details> ### website https://docs.agents.land/mesh-by-distilled-ai ### Agent Page http://www.deepnlp.org/store/ai-agent/ai-docs/pub-agents-land/agents-land ### description As the platform matures, AI Agents will have the ability to interact autonomously with a wide range of Web 2.0 and Web3 platforms via API. Provide API keys for preset and custom integrations; Experime ### category AI Docs ### tags </details> ## [powerdocs ai](https://www.powerdocs.ai/) <details> ### website https://www.powerdocs.ai/ ### Agent Page http://www.deepnlp.org/store/ai-agent/ai-docs/pub-powerdocs-ai/powerdocs-ai ### description Power Docs ai leverages advanced AI to search and organize your documents, unlocking valuable insights and boosting your productivity. Transform your workflow today! ... AI Agents; Advanced Document O ### category AI Docs ### tags </details> ## [librechat ai](https://www.librechat.ai/docs/features/agents) <details> ### website https://www.librechat.ai/docs/features/agents ### Agent Page http://www.deepnlp.org/store/ai-agent/ai-docs/pub-librechat-ai/librechat-ai ### description LibreChat’s AI Agents feature provides a flexible framework for creating custom AI assistants powered by various model providers. This feature is similar to OpenAI’s Assistants API and ChatGPT’s GPTs, ### category AI Docs ### tags </details> ## [tray ai](https://tray.ai/documentation/templates/ai-agent-tools/at-internal-knowledge-service-via-google-docs/) <details> ### website https://tray.ai/documentation/templates/ai-agent-tools/at-internal-knowledge-service-via-google-docs/ ### Agent Page http://www.deepnlp.org/store/ai-agent/ai-docs/pub-tray-ai/tray-ai ### description Internal Knowledge Service via Google Docs. Workflow. AI Agent Tools. Beginner. Use Template. ### category AI Docs ### tags </details>
dogtooth/uf_tulu_3_uf_iter3_small_beta_3
dogtooth
2024-12-29T22:48:16Z
18
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-29T22:48:00Z
0
--- dataset_info: features: - name: prompt dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string - name: model_completion dtype: string - name: reference_completion dtype: string splits: - name: train num_bytes: 1663080916 num_examples: 183405 download_size: 499171007 dataset_size: 1663080916 configs: - config_name: default data_files: - split: train path: data/train-* ---
huanyuqingming/Machine-Learning-Project
huanyuqingming
2024-11-27T03:30:55Z
48
1
[ "task_categories:image-to-3d", "language:en", "language:zh", "license:other", "size_categories:100B<n<1T", "modality:3d", "region:us", "architecture", "3d", "sketchfab" ]
[ "image-to-3d" ]
2024-11-26T08:57:21Z
0
--- license: other task_categories: - image-to-3d language: - en - zh tags: - architecture - 3d - sketchfab pretty_name: Datasets of AI2612 size_categories: - 100B<n<1T --- # Datasets of AI2612 3D models(.glb) and rendergraphs about architecture. The source data are from [sketchfab](https://sketchfab.com).
Asap7772/Asap7772open_web_math_raw_700001_733334
Asap7772
2025-02-12T03:48:07Z
16
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-11T08:28:24Z
0
--- dataset_info: features: - name: url dtype: string - name: text dtype: string - name: date dtype: string - name: metadata dtype: string - name: backtracking_raw dtype: string - name: is_solution_raw dtype: string - name: verification_raw dtype: string - name: subgoal_setting_raw dtype: string - name: backward_chaining_raw dtype: string splits: - name: train num_bytes: 307729901 num_examples: 25000 download_size: 136289815 dataset_size: 307729901 configs: - config_name: default data_files: - split: train path: data/train-* ---
french-datasets/Nexdata_French_Speech_Data_by_Mobile_Phone_Reading
french-datasets
2025-05-20T09:42:26Z
0
0
[ "language:fra", "region:us" ]
[]
2025-05-20T09:38:55Z
0
--- language: - fra viewer: false --- Ce répertoire est vide, il a été créé pour améliorer le référencement du jeu de données [Nexdata/French_Speech_Data_by_Mobile_Phone_Reading](https://huggingface.co/datasets/Nexdata/French_Speech_Data_by_Mobile_Phone_Reading).
HungVu2003/opt-350m_beta_1.0_alpha_0.0_num-company_3_dataset_1_for_gen_19
HungVu2003
2025-04-08T00:03:56Z
15
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-08T00:03:54Z
0
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 6619719 num_examples: 12500 download_size: 3373397 dataset_size: 6619719 configs: - config_name: default data_files: - split: train path: data/train-* ---
qwselfcorr/numia_step80
qwselfcorr
2025-02-05T19:51:33Z
20
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-05T19:51:31Z
0
--- dataset_info: features: - name: idx dtype: int64 - name: prompt dtype: string - name: answers sequence: string - name: gt dtype: string splits: - name: train num_bytes: 1035913 num_examples: 496 download_size: 393730 dataset_size: 1035913 configs: - config_name: default data_files: - split: train path: data/train-* ---
varunjasti/DocumentIDEFICS_VQA
varunjasti
2025-03-04T07:00:42Z
14
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-27T05:59:32Z
0
--- dataset_info: features: - name: id dtype: string - name: query dtype: string - name: answers dtype: string - name: image dtype: image splits: - name: train num_bytes: 256079458.0 num_examples: 398 - name: test num_bytes: 41691119.0 num_examples: 82 download_size: 259660810 dataset_size: 297770577.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
pe-nlp/DeepMath-20K-25K-filteredv2-difficulty
pe-nlp
2025-06-09T17:20:30Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-09T17:20:25Z
0
--- dataset_info: features: - name: question dtype: string - name: final_answer dtype: string - name: difficulty dtype: int32 - name: topic dtype: string - name: model_responses sequence: string - name: model_scores sequence: float64 - name: failed_count dtype: float64 - name: processing_success dtype: bool splits: - name: train num_bytes: 161907348 num_examples: 5000 download_size: 45037747 dataset_size: 161907348 configs: - config_name: default data_files: - split: train path: data/train-* ---
tingtingou/gpt4o_full_edit_inst
tingtingou
2025-03-02T11:55:17Z
15
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-24T18:51:52Z
0
--- dataset_info: features: - name: Artifact heatmap sequence: sequence: sequence: int64 - name: Misalignment heatmap sequence: sequence: sequence: int64 - name: Misalignment token label dtype: string - name: revised_image dtype: binary - name: prompt dtype: string - name: feedback dtype: string - name: inst_llava dtype: string - name: inst_rlhf dtype: string - name: inst_gpt_1step dtype: string - name: inst_gpt_2step dtype: string - name: inst_rlhf_new dtype: string splits: - name: train num_bytes: 9058467869 num_examples: 1401 download_size: 211077168 dataset_size: 9058467869 configs: - config_name: default data_files: - split: train path: data/train-* ---