chunk_id
stringlengths 44
45
| chunk_content
stringlengths 21
448
| filename
stringlengths 36
36
|
---|---|---|
da3a9a59e28032fcc1512bc893e65de2.txt_chunk_2 | tead, it is more efficient to train a smaller number of prompt parameters or use a reparametrization method like low-rank adaptation (LoRA) to reduce the number of trainable parameters.
This quicktour will show you 🤗 PEFT’s main features and help you train large pretrained models that would typically be inaccessible on consumer devices. You’ll see how to train the 1.2B parameter bigscience/mt0-large model with LoRA to generate a classification | da3a9a59e28032fcc1512bc893e65de2.txt |
da3a9a59e28032fcc1512bc893e65de2.txt_chunk_3 | n consumer devices. You’ll see how to train the 1.2B parameter bigscience/mt0-large model with LoRA to generate a classification label and use it for inference.
PeftConfig
Each 🤗 PEFT method is defined by a PeftConfig class that stores all the important parameters for building a PeftModel.
Because you’re going to use LoRA, you’ll need to load and create a LoraConfig class. Within LoraConfig, specify the following parameters:
the task_type, | da3a9a59e28032fcc1512bc893e65de2.txt |
da3a9a59e28032fcc1512bc893e65de2.txt_chunk_4 | se LoRA, you’ll need to load and create a LoraConfig class. Within LoraConfig, specify the following parameters:
the task_type, or sequence-to-sequence language modeling in this case
inference_mode, whether you’re using the model for inference or not
r, the dimension of the low-rank matrices
lora_alpha, the scaling factor for the low-rank matrices
lora_dropout, the dropout probability of the LoRA layers
Copied
from peft import LoraConfig, Ta | da3a9a59e28032fcc1512bc893e65de2.txt |
da3a9a59e28032fcc1512bc893e65de2.txt_chunk_5 | tor for the low-rank matrices
lora_dropout, the dropout probability of the LoRA layers
Copied
from peft import LoraConfig, TaskType
peft_config = LoraConfig(task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1)
💡 See the LoraConfig reference for more details about other parameters you can adjust.
PeftModel
A PeftModel is created by the get_peft_model() function. It takes a base model - which you can | da3a9a59e28032fcc1512bc893e65de2.txt |
da3a9a59e28032fcc1512bc893e65de2.txt_chunk_6 | ters you can adjust.
PeftModel
A PeftModel is created by the get_peft_model() function. It takes a base model - which you can load from the 🤗 Transformers library - and the PeftConfig containing the instructions for how to configure a model for a specific 🤗 PEFT method.
Start by loading the base model you want to finetune.
Copied
from transformers import AutoModelForSeq2SeqLM
model_name_or_path = "bigscience/mt0-large"
tokenizer_name_or_ | da3a9a59e28032fcc1512bc893e65de2.txt |
da3a9a59e28032fcc1512bc893e65de2.txt_chunk_7 | netune.
Copied
from transformers import AutoModelForSeq2SeqLM
model_name_or_path = "bigscience/mt0-large"
tokenizer_name_or_path = "bigscience/mt0-large"
model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path)
Wrap your base model and peft_config with the get_peft_model function to create a PeftModel. To get a sense of the number of trainable parameters in your model, use the print_trainable_parameters method. In this case, you’re | da3a9a59e28032fcc1512bc893e65de2.txt |
da3a9a59e28032fcc1512bc893e65de2.txt_chunk_8 | get a sense of the number of trainable parameters in your model, use the print_trainable_parameters method. In this case, you’re only training 0.19% of the model’s parameters! 🤏
Copied
from peft import get_peft_model
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
"output: trainable params: 2359296 || all params: 1231940608 || trainable%: 0.19151053100118282"
That is it 🎉! Now you can train the model using the | da3a9a59e28032fcc1512bc893e65de2.txt |
da3a9a59e28032fcc1512bc893e65de2.txt_chunk_9 | rams: 2359296 || all params: 1231940608 || trainable%: 0.19151053100118282"
That is it 🎉! Now you can train the model using the 🤗 Transformers Trainer, 🤗 Accelerate, or any custom PyTorch training loop.
Save and load a model
After your model is finished training, you can save your model to a directory using the save_pretrained function. You can also save your model to the Hub (make sure you log in to your Hugging Face account first) with the | da3a9a59e28032fcc1512bc893e65de2.txt |
da3a9a59e28032fcc1512bc893e65de2.txt_chunk_10 | _pretrained function. You can also save your model to the Hub (make sure you log in to your Hugging Face account first) with the push_to_hub function.
Copied
model.save_pretrained("output_dir")
# if pushing to Hub
from huggingface_hub import notebook_login
notebook_login()
model.push_to_hub("my_awesome_peft_model")
This only saves the incremental 🤗 PEFT weights that were trained, meaning it is super efficient to store, transfer, and load. | da3a9a59e28032fcc1512bc893e65de2.txt |
da3a9a59e28032fcc1512bc893e65de2.txt_chunk_11 | )
This only saves the incremental 🤗 PEFT weights that were trained, meaning it is super efficient to store, transfer, and load. For example, this bigscience/T0_3B model trained with LoRA on the twitter_complaints subset of the RAFT dataset only contains two files: adapter_config.json and adapter_model.bin. The latter file is just 19MB!
Easily load your model for inference using the from_pretrained function:
Copied
from transformers import | da3a9a59e28032fcc1512bc893e65de2.txt |
da3a9a59e28032fcc1512bc893e65de2.txt_chunk_12 | ile is just 19MB!
Easily load your model for inference using the from_pretrained function:
Copied
from transformers import AutoModelForSeq2SeqLM
+ from peft import PeftModel, PeftConfig
+ peft_model_id = "smangrul/twitter_complaints_bigscience_T0_3B_LORA_SEQ_2_SEQ_LM"
+ config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path)
+ model = PeftModel.from_pretrained(mode | da3a9a59e28032fcc1512bc893e65de2.txt |
da3a9a59e28032fcc1512bc893e65de2.txt_chunk_13 | del_id)
model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path)
+ model = PeftModel.from_pretrained(model, peft_model_id)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
model = model.to(device)
model.eval()
inputs = tokenizer("Tweet text : @HondaCustSvc Your customer service has been horrible during the recall process. I will never purchase a Honda again. Label :", return_tensors="pt") | da3a9a59e28032fcc1512bc893e65de2.txt |
da3a9a59e28032fcc1512bc893e65de2.txt_chunk_14 | ustomer service has been horrible during the recall process. I will never purchase a Honda again. Label :", return_tensors="pt")
with torch.no_grad():
outputs = model.generate(input_ids=inputs["input_ids"].to("cuda"), max_new_tokens=10)
print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0])
'complaint'
Easy loading with Auto classes
If you have saved your adapter locally or on the Hub, yo | da3a9a59e28032fcc1512bc893e65de2.txt |
da3a9a59e28032fcc1512bc893e65de2.txt_chunk_15 | ecial_tokens=True)[0])
'complaint'
Easy loading with Auto classes
If you have saved your adapter locally or on the Hub, you can leverage the AutoPeftModelForxxx classes and load any PEFT model with a single line of code:
Copied
- from peft import PeftConfig, PeftModel
- from transformers import AutoModelForCausalLM
+ from peft import AutoPeftModelForCausalLM
- peft_config = PeftConfig.from_pretrained("ybelkada/opt-350m-lora")
- base_ | da3a9a59e28032fcc1512bc893e65de2.txt |
da3a9a59e28032fcc1512bc893e65de2.txt_chunk_16 | salLM
+ from peft import AutoPeftModelForCausalLM
- peft_config = PeftConfig.from_pretrained("ybelkada/opt-350m-lora")
- base_model_path = peft_config.base_model_name_or_path
- transformers_model = AutoModelForCausalLM.from_pretrained(base_model_path)
- peft_model = PeftModel.from_pretrained(transformers_model, peft_config)
+ peft_model = AutoPeftModelForCausalLM.from_pretrained("ybelkada/opt-350m-lora")
Currently, supported auto classes are: | da3a9a59e28032fcc1512bc893e65de2.txt |
da3a9a59e28032fcc1512bc893e65de2.txt_chunk_17 | config)
+ peft_model = AutoPeftModelForCausalLM.from_pretrained("ybelkada/opt-350m-lora")
Currently, supported auto classes are: AutoPeftModelForCausalLM, AutoPeftModelForSequenceClassification, AutoPeftModelForSeq2SeqLM, AutoPeftModelForTokenClassification, AutoPeftModelForQuestionAnswering and AutoPeftModelForFeatureExtraction. For other tasks (e.g. Whisper, StableDiffusion), you can load the model with:
Copied
- from peft import PeftModel | da3a9a59e28032fcc1512bc893e65de2.txt |
da3a9a59e28032fcc1512bc893e65de2.txt_chunk_18 | Extraction. For other tasks (e.g. Whisper, StableDiffusion), you can load the model with:
Copied
- from peft import PeftModel, PeftConfig, AutoPeftModel
+ from peft import AutoPeftModel
- from transformers import WhisperForConditionalGeneration
- model_id = "smangrul/openai-whisper-large-v2-LORA-colab"
peft_model_id = "smangrul/openai-whisper-large-v2-LORA-colab"
- peft_config = PeftConfig.from_pretrained(peft_model_id)
- model = WhisperFo | da3a9a59e28032fcc1512bc893e65de2.txt |
da3a9a59e28032fcc1512bc893e65de2.txt_chunk_19 | id = "smangrul/openai-whisper-large-v2-LORA-colab"
- peft_config = PeftConfig.from_pretrained(peft_model_id)
- model = WhisperForConditionalGeneration.from_pretrained(
- peft_config.base_model_name_or_path, load_in_8bit=True, device_map="auto"
- )
- model = PeftModel.from_pretrained(model, peft_model_id)
+ model = AutoPeftModel.from_pretrained(peft_model_id)
Next steps
Now that you’ve seen how to train a model with one of the 🤗 PEFT meth | da3a9a59e28032fcc1512bc893e65de2.txt |
da3a9a59e28032fcc1512bc893e65de2.txt_chunk_20 | AutoPeftModel.from_pretrained(peft_model_id)
Next steps
Now that you’ve seen how to train a model with one of the 🤗 PEFT methods, we encourage you to try out some of the other methods like prompt tuning. The steps are very similar to the ones shown in this quickstart; prepare a PeftConfig for a 🤗 PEFT method, and use the get_peft_model to create a PeftModel from the configuration and base model. Then you can train it however you like!
Feel f | da3a9a59e28032fcc1512bc893e65de2.txt |
da3a9a59e28032fcc1512bc893e65de2.txt_chunk_21 | e the get_peft_model to create a PeftModel from the configuration and base model. Then you can train it however you like!
Feel free to also take a look at the task guides if you’re interested in training a model with a 🤗 PEFT method for a specific task such as semantic segmentation, multilingual automatic speech recognition, DreamBooth, and token classification.
| da3a9a59e28032fcc1512bc893e65de2.txt |
da3a9a59e28032fcc1512bc893e65de2.txt_chunk_22 | ition, DreamBooth, and token classification.
| da3a9a59e28032fcc1512bc893e65de2.txt |
4758dc91003d8b9b06510eec1d5bc44e.txt_chunk_1 | IA3
This conceptual guide gives a brief overview of IA3, a parameter-efficient fine tuning technique that is
intended to improve over LoRA.
To make fine-tuning more efficient, IA3 (Infused Adapter by Inhibiting and Amplifying Inner Activations)
rescales inner activations with learned vectors. These learned vectors are injected in the attention and feedforward modules
in a typical transformer-based architecture. These learned vectors are the | 4758dc91003d8b9b06510eec1d5bc44e.txt |
4758dc91003d8b9b06510eec1d5bc44e.txt_chunk_2 | re injected in the attention and feedforward modules
in a typical transformer-based architecture. These learned vectors are the only trainable parameters during fine-tuning, and thus the original
weights remain frozen. Dealing with learned vectors (as opposed to learned low-rank updates to a weight matrix like LoRA)
keeps the number of trainable parameters much smaller.
Being similar to LoRA, IA3 carries many of the same advantages:
IA3 makes | 4758dc91003d8b9b06510eec1d5bc44e.txt |
4758dc91003d8b9b06510eec1d5bc44e.txt_chunk_3 | eps the number of trainable parameters much smaller.
Being similar to LoRA, IA3 carries many of the same advantages:
IA3 makes fine-tuning more efficient by drastically reducing the number of trainable parameters. (For T0, an IA3 model only has about 0.01% trainable parameters, while even LoRA has > 0.1%)
The original pre-trained weights are kept frozen, which means you can have multiple lightweight and portable IA3 models for various downstr | 4758dc91003d8b9b06510eec1d5bc44e.txt |
4758dc91003d8b9b06510eec1d5bc44e.txt_chunk_4 | l pre-trained weights are kept frozen, which means you can have multiple lightweight and portable IA3 models for various downstream tasks built on top of them.
Performance of models fine-tuned using IA3 is comparable to the performance of fully fine-tuned models.
IA3 does not add any inference latency because adapter weights can be merged with the base model.
In principle, IA3 can be applied to any subset of weight matrices in a neural network | 4758dc91003d8b9b06510eec1d5bc44e.txt |
4758dc91003d8b9b06510eec1d5bc44e.txt_chunk_5 | eights can be merged with the base model.
In principle, IA3 can be applied to any subset of weight matrices in a neural network to reduce the number of trainable
parameters. Following the authors’ implementation, IA3 weights are added to the key, value and feedforward layers
of a Transformer model. Given the target layers for injecting IA3 parameters, the number of trainable parameters
can be determined based on the size of the weight matrices. | 4758dc91003d8b9b06510eec1d5bc44e.txt |
4758dc91003d8b9b06510eec1d5bc44e.txt_chunk_6 | ers for injecting IA3 parameters, the number of trainable parameters
can be determined based on the size of the weight matrices.
Common IA3 parameters in PEFT
As with other methods supported by PEFT, to fine-tune a model using IA3, you need to:
Instantiate a base model.
Create a configuration (IA3Config) where you define IA3-specific parameters.
Wrap the base model with get_peft_model() to get a trainable PeftModel.
Train the PeftModel as y | 4758dc91003d8b9b06510eec1d5bc44e.txt |
4758dc91003d8b9b06510eec1d5bc44e.txt_chunk_7 | define IA3-specific parameters.
Wrap the base model with get_peft_model() to get a trainable PeftModel.
Train the PeftModel as you normally would train the base model.
IA3Config allows you to control how IA3 is applied to the base model through the following parameters:
target_modules: The modules (for example, attention blocks) to apply the IA3 vectors.
feedforward_modules: The list of modules to be treated as feedforward layers in target_mod | 4758dc91003d8b9b06510eec1d5bc44e.txt |
4758dc91003d8b9b06510eec1d5bc44e.txt_chunk_8 | ion blocks) to apply the IA3 vectors.
feedforward_modules: The list of modules to be treated as feedforward layers in target_modules. While learned vectors are multiplied with
the output activation for attention blocks, the vectors are multiplied with the input for classic feedforward layers.
modules_to_save: List of modules apart from IA3 layers to be set as trainable and saved in the final checkpoint. These typically include model’s custom he | 4758dc91003d8b9b06510eec1d5bc44e.txt |
4758dc91003d8b9b06510eec1d5bc44e.txt_chunk_9 | odules apart from IA3 layers to be set as trainable and saved in the final checkpoint. These typically include model’s custom head that is randomly initialized for the fine-tuning task.
| 4758dc91003d8b9b06510eec1d5bc44e.txt |
9b4b2a877f961d4a993eb4bed333e971.txt_chunk_1 | Installation
Before you start, you will need to setup your environment, install the appropriate packages, and configure 🤗 PEFT. 🤗 PEFT is tested on Python 3.8+.
🤗 PEFT is available on PyPI, as well as GitHub:
PyPI
To install 🤗 PEFT from PyPI:
Copied
pip install peft
Source
New features that haven’t been released yet are added every day, which also means there may be some bugs. To try them out, install from the GitHub repository:
C | 9b4b2a877f961d4a993eb4bed333e971.txt |
9b4b2a877f961d4a993eb4bed333e971.txt_chunk_2 | ased yet are added every day, which also means there may be some bugs. To try them out, install from the GitHub repository:
Copied
pip install git+https://github.com/huggingface/peft
If you’re working on contributing to the library or wish to play with the source code and see live
results as you run the code, an editable version can be installed from a locally-cloned version of the
repository:
Copied
git clone https://github.com/huggingfa | 9b4b2a877f961d4a993eb4bed333e971.txt |
9b4b2a877f961d4a993eb4bed333e971.txt_chunk_3 | table version can be installed from a locally-cloned version of the
repository:
Copied
git clone https://github.com/huggingface/peft
cd peft
pip install -e .
| 9b4b2a877f961d4a993eb4bed333e971.txt |
d235da59d19a372d0b7fda265c067f4e.txt_chunk_1 | P-tuning for sequence classification
It is challenging to finetune large language models for downstream tasks because they have so many parameters. To work around this, you can use prompts to steer the model toward a particular downstream task without fully finetuning a model. Typically, these prompts are handcrafted, which may be impractical because you need very large validation sets to find the best prompts. P-tuning is a method for automa | d235da59d19a372d0b7fda265c067f4e.txt |
d235da59d19a372d0b7fda265c067f4e.txt_chunk_2 | , which may be impractical because you need very large validation sets to find the best prompts. P-tuning is a method for automatically searching and optimizing for better prompts in a continuous space.
💡 Read GPT Understands, Too to learn more about p-tuning.
This guide will show you how to train a roberta-large model (but you can also use any of the GPT, OPT, or BLOOM models) with p-tuning on the mrpc configuration of the GLUE benchmark.
Befo | d235da59d19a372d0b7fda265c067f4e.txt |
d235da59d19a372d0b7fda265c067f4e.txt_chunk_3 | (but you can also use any of the GPT, OPT, or BLOOM models) with p-tuning on the mrpc configuration of the GLUE benchmark.
Before you begin, make sure you have all the necessary libraries installed:
Copied
!pip install -q peft transformers datasets evaluate
Setup
To get started, import 🤗 Transformers to create the base model, 🤗 Datasets to load a dataset, 🤗 Evaluate to load an evaluation metric, and 🤗 PEFT to create a PeftModel and setup | d235da59d19a372d0b7fda265c067f4e.txt |
d235da59d19a372d0b7fda265c067f4e.txt_chunk_4 | he base model, 🤗 Datasets to load a dataset, 🤗 Evaluate to load an evaluation metric, and 🤗 PEFT to create a PeftModel and setup the configuration for p-tuning.
Define the model, dataset, and some basic training hyperparameters:
Copied
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
TrainingArguments,
Trainer,
)
from peft import (
get_peft_config,
get_peft_mod | d235da59d19a372d0b7fda265c067f4e.txt |
d235da59d19a372d0b7fda265c067f4e.txt_chunk_5 | zer,
DataCollatorWithPadding,
TrainingArguments,
Trainer,
)
from peft import (
get_peft_config,
get_peft_model,
get_peft_model_state_dict,
set_peft_model_state_dict,
PeftType,
PromptEncoderConfig,
)
from datasets import load_dataset
import evaluate
import torch
model_name_or_path = "roberta-large"
task = "mrpc"
num_epochs = 20
lr = 1e-3
batch_size = 32
Load dataset and metric
Next, load the mrpc configura | d235da59d19a372d0b7fda265c067f4e.txt |
d235da59d19a372d0b7fda265c067f4e.txt_chunk_6 | "roberta-large"
task = "mrpc"
num_epochs = 20
lr = 1e-3
batch_size = 32
Load dataset and metric
Next, load the mrpc configuration - a corpus of sentence pairs labeled according to whether they’re semantically equivalent or not - from the GLUE benchmark:
Copied
dataset = load_dataset("glue", task)
dataset["train"][0]
{
"sentence1": 'Amrozi accused his brother , whom he called " the witness " , of deliberately distorting his evidence .' | d235da59d19a372d0b7fda265c067f4e.txt |
d235da59d19a372d0b7fda265c067f4e.txt_chunk_7 | [0]
{
"sentence1": 'Amrozi accused his brother , whom he called " the witness " , of deliberately distorting his evidence .',
"sentence2": 'Referring to him as only " the witness " , Amrozi accused his brother of deliberately distorting his evidence .',
"label": 1,
"idx": 0,
}
From 🤗 Evaluate, load a metric for evaluating the model’s performance. The evaluation module returns the accuracy and F1 scores associated with this speci | d235da59d19a372d0b7fda265c067f4e.txt |
d235da59d19a372d0b7fda265c067f4e.txt_chunk_8 | tric for evaluating the model’s performance. The evaluation module returns the accuracy and F1 scores associated with this specific task.
Copied
metric = evaluate.load("glue", task)
Now you can use the metric to write a function that computes the accuracy and F1 scores. The compute_metric function calculates the scores from the model predictions and labels:
Copied
import numpy as np
def compute_metrics(eval_pred):
predictions, label | d235da59d19a372d0b7fda265c067f4e.txt |
d235da59d19a372d0b7fda265c067f4e.txt_chunk_9 | res from the model predictions and labels:
Copied
import numpy as np
def compute_metrics(eval_pred):
predictions, labels = eval_pred
predictions = np.argmax(predictions, axis=1)
return metric.compute(predictions=predictions, references=labels)
Preprocess dataset
Initialize the tokenizer and configure the padding token to use. If you’re using a GPT, OPT, or BLOOM model, you should set the padding_side to the left; otherwise i | d235da59d19a372d0b7fda265c067f4e.txt |
d235da59d19a372d0b7fda265c067f4e.txt_chunk_10 | e the padding token to use. If you’re using a GPT, OPT, or BLOOM model, you should set the padding_side to the left; otherwise it’ll be set to the right. Tokenize the sentence pairs and truncate them to the maximum length.
Copied
if any(k in model_name_or_path for k in ("gpt", "opt", "bloom")):
padding_side = "left"
else:
padding_side = "right"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, padding_side=padding_side)
| d235da59d19a372d0b7fda265c067f4e.txt |
d235da59d19a372d0b7fda265c067f4e.txt_chunk_11 | eft"
else:
padding_side = "right"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, padding_side=padding_side)
if getattr(tokenizer, "pad_token_id") is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
def tokenize_function(examples):
# max_length=None => use the model max length (it's actually the default)
outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None)
| d235da59d19a372d0b7fda265c067f4e.txt |
d235da59d19a372d0b7fda265c067f4e.txt_chunk_12 | tually the default)
outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None)
return outputs
Use map to apply the tokenize_function to the dataset, and remove the unprocessed columns because the model won’t need those. You should also rename the label column to labels because that is the expected name for the labels by models in the 🤗 Transformers library.
Copied
tokenized_datasets = dataset. | d235da59d19a372d0b7fda265c067f4e.txt |
d235da59d19a372d0b7fda265c067f4e.txt_chunk_13 | ecause that is the expected name for the labels by models in the 🤗 Transformers library.
Copied
tokenized_datasets = dataset.map(
tokenize_function,
batched=True,
remove_columns=["idx", "sentence1", "sentence2"],
)
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
Create a collator function with DataCollatorWithPadding to pad the examples in the batches to the longest sequence in the batch:
Copied
data_ | d235da59d19a372d0b7fda265c067f4e.txt |
d235da59d19a372d0b7fda265c067f4e.txt_chunk_14 | r function with DataCollatorWithPadding to pad the examples in the batches to the longest sequence in the batch:
Copied
data_collator = DataCollatorWithPadding(tokenizer=tokenizer, padding="longest")
Train
P-tuning uses a prompt encoder to optimize the prompt parameters, so you’ll need to initialize the PromptEncoderConfig with several arguments:
task_type: the type of task you’re training on, in this case it is sequence classification or | d235da59d19a372d0b7fda265c067f4e.txt |
d235da59d19a372d0b7fda265c067f4e.txt_chunk_15 | oderConfig with several arguments:
task_type: the type of task you’re training on, in this case it is sequence classification or SEQ_CLS
num_virtual_tokens: the number of virtual tokens to use, or in other words, the prompt
encoder_hidden_size: the hidden size of the encoder used to optimize the prompt parameters
Copied
peft_config = PromptEncoderConfig(task_type="SEQ_CLS", num_virtual_tokens=20, encoder_hidden_size=128)
Create the base robe | d235da59d19a372d0b7fda265c067f4e.txt |
d235da59d19a372d0b7fda265c067f4e.txt_chunk_16 | pied
peft_config = PromptEncoderConfig(task_type="SEQ_CLS", num_virtual_tokens=20, encoder_hidden_size=128)
Create the base roberta-large model from AutoModelForSequenceClassification, and then wrap the base model and peft_config with get_peft_model() to create a PeftModel. If you’re curious to see how many parameters you’re actually training compared to training on all the model parameters, you can print it out with print_trainable_parameters( | d235da59d19a372d0b7fda265c067f4e.txt |
d235da59d19a372d0b7fda265c067f4e.txt_chunk_17 | you’re actually training compared to training on all the model parameters, you can print it out with print_trainable_parameters():
Copied
model = AutoModelForSequenceClassification.from_pretrained(model_name_or_path, return_dict=True)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
"trainable params: 1351938 || all params: 355662082 || trainable%: 0.38011867680626127"
From the 🤗 Transformers library, set up the | d235da59d19a372d0b7fda265c067f4e.txt |
d235da59d19a372d0b7fda265c067f4e.txt_chunk_18 | inable params: 1351938 || all params: 355662082 || trainable%: 0.38011867680626127"
From the 🤗 Transformers library, set up the TrainingArguments class with where you want to save the model to, the training hyperparameters, how to evaluate the model, and when to save the checkpoints:
Copied
training_args = TrainingArguments(
output_dir="your-name/roberta-large-peft-p-tuning",
learning_rate=1e-3,
per_device_train_batch_size=32,
| d235da59d19a372d0b7fda265c067f4e.txt |
d235da59d19a372d0b7fda265c067f4e.txt_chunk_19 | rguments(
output_dir="your-name/roberta-large-peft-p-tuning",
learning_rate=1e-3,
per_device_train_batch_size=32,
per_device_eval_batch_size=32,
num_train_epochs=2,
weight_decay=0.01,
evaluation_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
)
Then pass the model, TrainingArguments, datasets, tokenizer, data collator, and evaluation function to the Trainer class, which’ll handle the ent | d235da59d19a372d0b7fda265c067f4e.txt |
d235da59d19a372d0b7fda265c067f4e.txt_chunk_20 | el, TrainingArguments, datasets, tokenizer, data collator, and evaluation function to the Trainer class, which’ll handle the entire training loop for you. Once you’re ready, call train to start training!
Copied
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["test"],
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=comp | d235da59d19a372d0b7fda265c067f4e.txt |
d235da59d19a372d0b7fda265c067f4e.txt_chunk_21 |
eval_dataset=tokenized_datasets["test"],
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
)
trainer.train()
Share model
You can store and share your model on the Hub if you’d like. Log in to your Hugging Face account and enter your token when prompted:
Copied
from huggingface_hub import notebook_login
notebook_login()
Upload the model to a specifc model repository on the Hub with the pu | d235da59d19a372d0b7fda265c067f4e.txt |
d235da59d19a372d0b7fda265c067f4e.txt_chunk_22 | om huggingface_hub import notebook_login
notebook_login()
Upload the model to a specifc model repository on the Hub with the push_to_hub function:
Copied
model.push_to_hub("your-name/roberta-large-peft-p-tuning", use_auth_token=True)
Inference
Once the model has been uploaded to the Hub, anyone can easily use it for inference. Load the configuration and model:
Copied
import torch
from peft import PeftModel, PeftConfig
from transformer | d235da59d19a372d0b7fda265c067f4e.txt |
d235da59d19a372d0b7fda265c067f4e.txt_chunk_23 | for inference. Load the configuration and model:
Copied
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
peft_model_id = "smangrul/roberta-large-peft-p-tuning"
config = PeftConfig.from_pretrained(peft_model_id)
inference_model = AutoModelForSequenceClassification.from_pretrained(config.base_model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or | d235da59d19a372d0b7fda265c067f4e.txt |
d235da59d19a372d0b7fda265c067f4e.txt_chunk_24 | assification.from_pretrained(config.base_model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
model = PeftModel.from_pretrained(inference_model, peft_model_id)
Get some text and tokenize it:
Copied
classes = ["not equivalent", "equivalent"]
sentence1 = "Coast redwood trees are the tallest trees on the planet and can grow over 300 feet tall."
sentence2 = "The coast redwood trees, which can attain a he | d235da59d19a372d0b7fda265c067f4e.txt |
d235da59d19a372d0b7fda265c067f4e.txt_chunk_25 | re the tallest trees on the planet and can grow over 300 feet tall."
sentence2 = "The coast redwood trees, which can attain a height of over 300 feet, are the tallest trees on earth."
inputs = tokenizer(sentence1, sentence2, truncation=True, padding="longest", return_tensors="pt")
Pass the inputs to the model to classify the sentences:
Copied
with torch.no_grad():
outputs = model(**inputs).logits
print(outputs)
paraphrased_text = t | d235da59d19a372d0b7fda265c067f4e.txt |
d235da59d19a372d0b7fda265c067f4e.txt_chunk_26 | ify the sentences:
Copied
with torch.no_grad():
outputs = model(**inputs).logits
print(outputs)
paraphrased_text = torch.softmax(outputs, dim=1).tolist()[0]
for i in range(len(classes)):
print(f"{classes[i]}: {int(round(paraphrased_text[i] * 100))}%")
"not equivalent: 4%"
"equivalent: 96%"
| d235da59d19a372d0b7fda265c067f4e.txt |
cb5cf13a6047f4b3b8e5ad4da477b066.txt_chunk_1 | Prefix tuning for conditional generation
Prefix tuning is an additive method where only a sequence of continuous task-specific vectors is attached to the beginning of the input, or prefix. Only the prefix parameters are optimized and added to the hidden states in every layer of the model. The tokens of the input sequence can still attend to the prefix as virtual tokens. As a result, prefix tuning stores 1000x fewer parameters than | cb5cf13a6047f4b3b8e5ad4da477b066.txt |
cb5cf13a6047f4b3b8e5ad4da477b066.txt_chunk_2 | input sequence can still attend to the prefix as virtual tokens. As a result, prefix tuning stores 1000x fewer parameters than a fully finetuned model, which means you can use one large language model for many tasks.
💡 Read Prefix-Tuning: Optimizing Continuous Prompts for Generation to learn more about prefix tuning.
This guide will show you how to apply prefix tuning to train a t5-large model on the sentences_allagree subset of the financial | cb5cf13a6047f4b3b8e5ad4da477b066.txt |
cb5cf13a6047f4b3b8e5ad4da477b066.txt_chunk_3 |
This guide will show you how to apply prefix tuning to train a t5-large model on the sentences_allagree subset of the financial_phrasebank dataset.
Before you begin, make sure you have all the necessary libraries installed:
Copied
!pip install -q peft transformers datasets
Setup
Start by defining the model and tokenizer, text and label columns, and some hyperparameters so it’ll be easier to start training faster later. Set the environmen | cb5cf13a6047f4b3b8e5ad4da477b066.txt |
cb5cf13a6047f4b3b8e5ad4da477b066.txt_chunk_4 | okenizer, text and label columns, and some hyperparameters so it’ll be easier to start training faster later. Set the environment variable TOKENIZERS_PARALLELSIM to false to disable the fast Rust-based tokenizer which processes data in parallel by default so you can use multiprocessing in Python.
Copied
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, default_data_collator, get_linear_schedule_with_warmup
from peft import get_p | cb5cf13a6047f4b3b8e5ad4da477b066.txt |
cb5cf13a6047f4b3b8e5ad4da477b066.txt_chunk_5 | rmers import AutoTokenizer, AutoModelForSeq2SeqLM, default_data_collator, get_linear_schedule_with_warmup
from peft import get_peft_config, get_peft_model, get_peft_model_state_dict, PrefixTuningConfig, TaskType
from datasets import load_dataset
from torch.utils.data import DataLoader
from tqdm import tqdm
import torch
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_VISIBLE_DEVICES"] = "3"
device = "cuda"
model_name_ | cb5cf13a6047f4b3b8e5ad4da477b066.txt |
cb5cf13a6047f4b3b8e5ad4da477b066.txt_chunk_6 |
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUDA_VISIBLE_DEVICES"] = "3"
device = "cuda"
model_name_or_path = "t5-large"
tokenizer_name_or_path = "t5-large"
text_column = "sentence"
label_column = "text_label"
max_length = 128
lr = 1e-2
num_epochs = 5
batch_size = 8
Load dataset
For this guide, you’ll train on the sentences_allagree subset of the financial_phrasebank dataset. This dataset contains financial news | cb5cf13a6047f4b3b8e5ad4da477b066.txt |
cb5cf13a6047f4b3b8e5ad4da477b066.txt_chunk_7 | guide, you’ll train on the sentences_allagree subset of the financial_phrasebank dataset. This dataset contains financial news categorized by sentiment.
Use 🤗 Datasets train_test_split function to create a training and validation split and convert the label value to the more readable text_label. All of the changes can be applied with the map function:
Copied
from datasets import load_dataset
dataset = load_dataset("financial_phrasebank", " | cb5cf13a6047f4b3b8e5ad4da477b066.txt |
cb5cf13a6047f4b3b8e5ad4da477b066.txt_chunk_8 | be applied with the map function:
Copied
from datasets import load_dataset
dataset = load_dataset("financial_phrasebank", "sentences_allagree")
dataset = dataset["train"].train_test_split(test_size=0.1)
dataset["validation"] = dataset["test"]
del dataset["test"]
classes = dataset["train"].features["label"].names
dataset = dataset.map(
lambda x: {"text_label": [classes[label] for label in x["label"]]},
batched=True,
num_proc=1, | cb5cf13a6047f4b3b8e5ad4da477b066.txt |
cb5cf13a6047f4b3b8e5ad4da477b066.txt_chunk_9 | dataset = dataset.map(
lambda x: {"text_label": [classes[label] for label in x["label"]]},
batched=True,
num_proc=1,
)
dataset["train"][0]
{"sentence": "Profit before taxes was EUR 4.0 mn , down from EUR 4.9 mn .", "label": 0, "text_label": "negative"}
Preprocess dataset
Initialize a tokenizer, and create a function to pad and truncate the model_inputs and labels:
Copied
tokenizer = AutoTokenizer.from_pretrained(model_name_or | cb5cf13a6047f4b3b8e5ad4da477b066.txt |
cb5cf13a6047f4b3b8e5ad4da477b066.txt_chunk_10 | te a function to pad and truncate the model_inputs and labels:
Copied
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
def preprocess_function(examples):
inputs = examples[text_column]
targets = examples[label_column]
model_inputs = tokenizer(inputs, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt")
labels = tokenizer(targets, max_length=2, padding="max_length", truncation=True, | cb5cf13a6047f4b3b8e5ad4da477b066.txt |
cb5cf13a6047f4b3b8e5ad4da477b066.txt_chunk_11 | gth", truncation=True, return_tensors="pt")
labels = tokenizer(targets, max_length=2, padding="max_length", truncation=True, return_tensors="pt")
labels = labels["input_ids"]
labels[labels == tokenizer.pad_token_id] = -100
model_inputs["labels"] = labels
return model_inputs
Use the map function to apply the preprocess_function to the dataset. You can remove the unprocessed columns since the model doesn’t need them anymore:
| cb5cf13a6047f4b3b8e5ad4da477b066.txt |
cb5cf13a6047f4b3b8e5ad4da477b066.txt_chunk_12 | pply the preprocess_function to the dataset. You can remove the unprocessed columns since the model doesn’t need them anymore:
Copied
processed_datasets = dataset.map(
preprocess_function,
batched=True,
num_proc=1,
remove_columns=dataset["train"].column_names,
load_from_cache_file=False,
desc="Running tokenizer on dataset",
)
Create a DataLoader from the train and eval datasets. Set pin_memory=True to speed up the dat | cb5cf13a6047f4b3b8e5ad4da477b066.txt |
cb5cf13a6047f4b3b8e5ad4da477b066.txt_chunk_13 | ="Running tokenizer on dataset",
)
Create a DataLoader from the train and eval datasets. Set pin_memory=True to speed up the data transfer to the GPU during training if the samples in your dataset are on a CPU.
Copied
train_dataset = processed_datasets["train"]
eval_dataset = processed_datasets["validation"]
train_dataloader = DataLoader(
train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=Tr | cb5cf13a6047f4b3b8e5ad4da477b066.txt |
cb5cf13a6047f4b3b8e5ad4da477b066.txt_chunk_14 | dataloader = DataLoader(
train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True
)
eval_dataloader = DataLoader(eval_dataset, collate_fn=default_data_collator, batch_size=batch_size, pin_memory=True)
Train model
Now you can setup your model and make sure it is ready for training. Specify the task in PrefixTuningConfig, create the base t5-large model from AutoModelForSeq2SeqLM, and then wrap t | cb5cf13a6047f4b3b8e5ad4da477b066.txt |
cb5cf13a6047f4b3b8e5ad4da477b066.txt_chunk_15 | for training. Specify the task in PrefixTuningConfig, create the base t5-large model from AutoModelForSeq2SeqLM, and then wrap the model and configuration in a PeftModel. Feel free to print the PeftModel’s parameters and compare it to fully training all the model parameters to see how much more efficient it is!
Copied
peft_config = PrefixTuningConfig(task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, num_virtual_tokens=20)
model = AutoM | cb5cf13a6047f4b3b8e5ad4da477b066.txt |
cb5cf13a6047f4b3b8e5ad4da477b066.txt_chunk_16 | ed
peft_config = PrefixTuningConfig(task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, num_virtual_tokens=20)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
"trainable params: 983040 || all params: 738651136 || trainable%: 0.13308583065659835"
Setup the optimizer and learning rate scheduler:
Copied
optimizer = torch.optim.AdamW(model.paramet | cb5cf13a6047f4b3b8e5ad4da477b066.txt |
cb5cf13a6047f4b3b8e5ad4da477b066.txt_chunk_17 | le%: 0.13308583065659835"
Setup the optimizer and learning rate scheduler:
Copied
optimizer = torch.optim.AdamW(model.parameters(), lr=lr)
lr_scheduler = get_linear_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=(len(train_dataloader) * num_epochs),
)
Move the model to the GPU, and then write a training loop to begin!
Copied
model = model.to(device)
for epoch in range(num_epochs):
model. | cb5cf13a6047f4b3b8e5ad4da477b066.txt |
cb5cf13a6047f4b3b8e5ad4da477b066.txt_chunk_18 | the GPU, and then write a training loop to begin!
Copied
model = model.to(device)
for epoch in range(num_epochs):
model.train()
total_loss = 0
for step, batch in enumerate(tqdm(train_dataloader)):
batch = {k: v.to(device) for k, v in batch.items()}
outputs = model(**batch)
loss = outputs.loss
total_loss += loss.detach().float()
loss.backward()
optimizer.step()
lr_scheduler. | cb5cf13a6047f4b3b8e5ad4da477b066.txt |
cb5cf13a6047f4b3b8e5ad4da477b066.txt_chunk_19 | outputs.loss
total_loss += loss.detach().float()
loss.backward()
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
eval_loss = 0
eval_preds = []
for step, batch in enumerate(tqdm(eval_dataloader)):
batch = {k: v.to(device) for k, v in batch.items()}
with torch.no_grad():
outputs = model(**batch)
loss = outputs.loss
eval_lo | cb5cf13a6047f4b3b8e5ad4da477b066.txt |
cb5cf13a6047f4b3b8e5ad4da477b066.txt_chunk_20 | in batch.items()}
with torch.no_grad():
outputs = model(**batch)
loss = outputs.loss
eval_loss += loss.detach().float()
eval_preds.extend(
tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True)
)
eval_epoch_loss = eval_loss / len(eval_dataloader)
eval_ppl = torch.exp(eval_epoch_loss)
train_epoch_loss = total_loss / len | cb5cf13a6047f4b3b8e5ad4da477b066.txt |
cb5cf13a6047f4b3b8e5ad4da477b066.txt_chunk_21 | _epoch_loss = eval_loss / len(eval_dataloader)
eval_ppl = torch.exp(eval_epoch_loss)
train_epoch_loss = total_loss / len(train_dataloader)
train_ppl = torch.exp(train_epoch_loss)
print(f"{epoch=}: {train_ppl=} {train_epoch_loss=} {eval_ppl=} {eval_epoch_loss=}")
Let’s see how well the model performs on the validation set:
Copied
correct = 0
total = 0
for pred, true in zip(eval_preds, dataset["validation"]["text_label"]):
| cb5cf13a6047f4b3b8e5ad4da477b066.txt |
cb5cf13a6047f4b3b8e5ad4da477b066.txt_chunk_22 | the validation set:
Copied
correct = 0
total = 0
for pred, true in zip(eval_preds, dataset["validation"]["text_label"]):
if pred.strip() == true.strip():
correct += 1
total += 1
accuracy = correct / total * 100
print(f"{accuracy=} % on the evaluation dataset")
print(f"{eval_preds[:10]=}")
print(f"{dataset['validation']['text_label'][:10]=}")
"accuracy=97.3568281938326 % on the evaluation dataset"
"eval_preds[:10]=['neutral', | cb5cf13a6047f4b3b8e5ad4da477b066.txt |
cb5cf13a6047f4b3b8e5ad4da477b066.txt_chunk_23 | taset['validation']['text_label'][:10]=}")
"accuracy=97.3568281938326 % on the evaluation dataset"
"eval_preds[:10]=['neutral', 'positive', 'neutral', 'positive', 'neutral', 'negative', 'negative', 'neutral', 'neutral', 'neutral']"
"dataset['validation']['text_label'][:10]=['neutral', 'positive', 'neutral', 'positive', 'neutral', 'negative', 'negative', 'neutral', 'neutral', 'neutral']"
97% accuracy in just a few minutes; pretty good!
Share mo | cb5cf13a6047f4b3b8e5ad4da477b066.txt |
cb5cf13a6047f4b3b8e5ad4da477b066.txt_chunk_24 | 'neutral', 'negative', 'negative', 'neutral', 'neutral', 'neutral']"
97% accuracy in just a few minutes; pretty good!
Share model
You can store and share your model on the Hub if you’d like. Login to your Hugging Face account and enter your token when prompted:
Copied
from huggingface_hub import notebook_login
notebook_login()
Upload the model to a specifc model repository on the Hub with the push_to_hub function:
Copied
peft_model_i | cb5cf13a6047f4b3b8e5ad4da477b066.txt |
cb5cf13a6047f4b3b8e5ad4da477b066.txt_chunk_25 | notebook_login()
Upload the model to a specifc model repository on the Hub with the push_to_hub function:
Copied
peft_model_id = "your-name/t5-large_PREFIX_TUNING_SEQ2SEQ"
model.push_to_hub("your-name/t5-large_PREFIX_TUNING_SEQ2SEQ", use_auth_token=True)
If you check the model file size in the repository, you’ll see that it is only 3.93MB! 🤏
Inference
Once the model has been uploaded to the Hub, anyone can easily use it for inference. Loa | cb5cf13a6047f4b3b8e5ad4da477b066.txt |
cb5cf13a6047f4b3b8e5ad4da477b066.txt_chunk_26 | that it is only 3.93MB! 🤏
Inference
Once the model has been uploaded to the Hub, anyone can easily use it for inference. Load the configuration and model:
Copied
from peft import PeftModel, PeftConfig
peft_model_id = "stevhliu/t5-large_PREFIX_TUNING_SEQ2SEQ"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path)
model = PeftModel.from_pretrained(model, peft_model | cb5cf13a6047f4b3b8e5ad4da477b066.txt |
cb5cf13a6047f4b3b8e5ad4da477b066.txt_chunk_27 | odel = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path)
model = PeftModel.from_pretrained(model, peft_model_id)
Get and tokenize some text about financial news:
Copied
inputs = tokenizer(
"The Lithuanian beer market made up 14.41 million liters in January , a rise of 0.8 percent from the year-earlier figure , the Lithuanian Brewers ' Association reporting citing the results from its members .",
return_tensors="pt | cb5cf13a6047f4b3b8e5ad4da477b066.txt |
cb5cf13a6047f4b3b8e5ad4da477b066.txt_chunk_28 | r-earlier figure , the Lithuanian Brewers ' Association reporting citing the results from its members .",
return_tensors="pt",
)
Put the model on a GPU and generate the predicted text sentiment:
Copied
model.to(device)
with torch.no_grad():
inputs = {k: v.to(device) for k, v in inputs.items()}
outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=10)
print(tokenizer.batch_decode(outputs.detach().cpu().numpy( | cb5cf13a6047f4b3b8e5ad4da477b066.txt |
cb5cf13a6047f4b3b8e5ad4da477b066.txt_chunk_29 | model.generate(input_ids=inputs["input_ids"], max_new_tokens=10)
print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True))
["positive"]
| cb5cf13a6047f4b3b8e5ad4da477b066.txt |
2dc6cfa27d4b32a85ca96b1c6023acf2.txt_chunk_1 | DeepSpeed
DeepSpeed is a library designed for speed and scale for distributed training of large models with billions of parameters. At its core is the Zero Redundancy Optimizer (ZeRO) that shards optimizer states (ZeRO-1), gradients (ZeRO-2), and parameters (ZeRO-3) across data parallel processes. This drastically reduces memory usage, allowing you to scale your training to billion parameter models. To unlock even more memory efficiency, ZeRO | 2dc6cfa27d4b32a85ca96b1c6023acf2.txt |
2dc6cfa27d4b32a85ca96b1c6023acf2.txt_chunk_2 | duces memory usage, allowing you to scale your training to billion parameter models. To unlock even more memory efficiency, ZeRO-Offload reduces GPU compute and memory by leveraging CPU resources during optimization.
Both of these features are supported in 🤗 Accelerate, and you can use them with 🤗 PEFT. This guide will help you learn how to use our DeepSpeed training script. You’ll configure the script to train a large model for conditional gen | 2dc6cfa27d4b32a85ca96b1c6023acf2.txt |
2dc6cfa27d4b32a85ca96b1c6023acf2.txt_chunk_3 | help you learn how to use our DeepSpeed training script. You’ll configure the script to train a large model for conditional generation with ZeRO-3 and ZeRO-Offload.
💡 To help you get started, check out our example training scripts for causal language modeling and conditional generation. You can adapt these scripts for your own applications or even use them out of the box if your task is similar to the one in the scripts.
Configuration
Start | 2dc6cfa27d4b32a85ca96b1c6023acf2.txt |
2dc6cfa27d4b32a85ca96b1c6023acf2.txt_chunk_4 | your own applications or even use them out of the box if your task is similar to the one in the scripts.
Configuration
Start by running the following command to create a DeepSpeed configuration file with 🤗 Accelerate. The --config_file flag allows you to save the configuration file to a specific location, otherwise it is saved as a default_config.yaml file in the 🤗 Accelerate cache.
The configuration file is used to set the default options | 2dc6cfa27d4b32a85ca96b1c6023acf2.txt |
2dc6cfa27d4b32a85ca96b1c6023acf2.txt_chunk_5 | it is saved as a default_config.yaml file in the 🤗 Accelerate cache.
The configuration file is used to set the default options when you launch the training script.
Copied
accelerate config --config_file ds_zero3_cpu.yaml
You’ll be asked a few questions about your setup, and configure the following arguments. In this example, you’ll use ZeRO-3 and ZeRO-Offload so make sure you pick those options.
Copied
`zero_stage`: [0] Disabled, [1] opt | 2dc6cfa27d4b32a85ca96b1c6023acf2.txt |
2dc6cfa27d4b32a85ca96b1c6023acf2.txt_chunk_6 | s example, you’ll use ZeRO-3 and ZeRO-Offload so make sure you pick those options.
Copied
`zero_stage`: [0] Disabled, [1] optimizer state partitioning, [2] optimizer+gradient state partitioning and [3] optimizer+gradient+parameter partitioning
`gradient_accumulation_steps`: Number of training steps to accumulate gradients before averaging and applying them.
`gradient_clipping`: Enable gradient clipping with value.
`offload_optimizer_device`: | 2dc6cfa27d4b32a85ca96b1c6023acf2.txt |
2dc6cfa27d4b32a85ca96b1c6023acf2.txt_chunk_7 | dients before averaging and applying them.
`gradient_clipping`: Enable gradient clipping with value.
`offload_optimizer_device`: [none] Disable optimizer offloading, [cpu] offload optimizer to CPU, [nvme] offload optimizer to NVMe SSD. Only applicable with ZeRO >= Stage-2.
`offload_param_device`: [none] Disable parameter offloading, [cpu] offload parameters to CPU, [nvme] offload parameters to NVMe SSD. Only applicable with ZeRO Stage-3.
`zero3 | 2dc6cfa27d4b32a85ca96b1c6023acf2.txt |
2dc6cfa27d4b32a85ca96b1c6023acf2.txt_chunk_8 | er offloading, [cpu] offload parameters to CPU, [nvme] offload parameters to NVMe SSD. Only applicable with ZeRO Stage-3.
`zero3_init_flag`: Decides whether to enable `deepspeed.zero.Init` for constructing massive models. Only applicable with ZeRO Stage-3.
`zero3_save_16bit_model`: Decides whether to save 16-bit model weights when using ZeRO Stage-3.
`mixed_precision`: `no` for FP32 training, `fp16` for FP16 mixed-precision training and `bf16` | 2dc6cfa27d4b32a85ca96b1c6023acf2.txt |
2dc6cfa27d4b32a85ca96b1c6023acf2.txt_chunk_9 | weights when using ZeRO Stage-3.
`mixed_precision`: `no` for FP32 training, `fp16` for FP16 mixed-precision training and `bf16` for BF16 mixed-precision training.
An example configuration file might look like the following. The most important thing to notice is that zero_stage is set to 3, and offload_optimizer_device and offload_param_device are set to the cpu.
Copied
compute_environment: LOCAL_MACHINE
deepspeed_config:
gradient_accumula | 2dc6cfa27d4b32a85ca96b1c6023acf2.txt |
2dc6cfa27d4b32a85ca96b1c6023acf2.txt_chunk_10 | and offload_param_device are set to the cpu.
Copied
compute_environment: LOCAL_MACHINE
deepspeed_config:
gradient_accumulation_steps: 1
gradient_clipping: 1.0
offload_optimizer_device: cpu
offload_param_device: cpu
zero3_init_flag: true
zero3_save_16bit_model: true
zero_stage: 3
distributed_type: DEEPSPEED
downcast_bf16: 'no'
dynamo_backend: 'NO'
fsdp_config: {}
machine_rank: 0
main_training_function: main
megatron_lm_config: | 2dc6cfa27d4b32a85ca96b1c6023acf2.txt |
2dc6cfa27d4b32a85ca96b1c6023acf2.txt_chunk_11 | SPEED
downcast_bf16: 'no'
dynamo_backend: 'NO'
fsdp_config: {}
machine_rank: 0
main_training_function: main
megatron_lm_config: {}
mixed_precision: 'no'
num_machines: 1
num_processes: 1
rdzv_backend: static
same_network: true
use_cpu: false
The important parts
Let’s dive a little deeper into the script so you can see what’s going on, and understand how it works.
Within the main function, the script creates an Accelerator class to initialize | 2dc6cfa27d4b32a85ca96b1c6023acf2.txt |
2dc6cfa27d4b32a85ca96b1c6023acf2.txt_chunk_12 | e what’s going on, and understand how it works.
Within the main function, the script creates an Accelerator class to initialize all the necessary requirements for distributed training.
💡 Feel free to change the model and dataset inside the main function. If your dataset format is different from the one in the script, you may also need to write your own preprocessing function.
The script also creates a configuration for the 🤗 PEFT method you’re | 2dc6cfa27d4b32a85ca96b1c6023acf2.txt |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.