chunk_id
stringlengths
44
45
chunk_content
stringlengths
21
448
filename
stringlengths
36
36
e8dfa1c467776183e9b66635fd4136c1.txt_chunk_14
t_dir, "text_encoder") if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None: config = LoraConfig.from_pretrained(text_encoder_sub_dir) base_model_name_or_path = config.base_model_name_or_path if base_model_name_or_path is None: raise ValueError("Please specify the base model name or path") pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype).to(de
e8dfa1c467776183e9b66635fd4136c1.txt
e8dfa1c467776183e9b66635fd4136c1.txt_chunk_15
base model name or path") pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype).to(device) pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name) if os.path.exists(text_encoder_sub_dir): pipe.text_encoder = PeftModel.from_pretrained( pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name ) if dtype in (torch.float1
e8dfa1c467776183e9b66635fd4136c1.txt
e8dfa1c467776183e9b66635fd4136c1.txt_chunk_16
trained( pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name ) if dtype in (torch.float16, torch.bfloat16): pipe.unet.half() pipe.text_encoder.half() pipe.to(device) return pipe Now you can use the function above to create a Stable Diffusion pipeline using the LoRA weights that you have created during the fine-tuning step. Note, if you’re running inference on the same machine, the
e8dfa1c467776183e9b66635fd4136c1.txt
e8dfa1c467776183e9b66635fd4136c1.txt_chunk_17
g the LoRA weights that you have created during the fine-tuning step. Note, if you’re running inference on the same machine, the path you specify here will be the same as OUTPUT_DIR. Copied pipe = get_lora_sd_pipeline(Path("path-to-saved-model"), adapter_name="dog") Once you have the pipeline with your fine-tuned model, you can use it to generate images: Copied prompt = "sks dog playing fetch in the park" negative_prompt = "low quality
e8dfa1c467776183e9b66635fd4136c1.txt
e8dfa1c467776183e9b66635fd4136c1.txt_chunk_18
model, you can use it to generate images: Copied prompt = "sks dog playing fetch in the park" negative_prompt = "low quality, blurry, unfinished" image = pipe(prompt, num_inference_steps=50, guidance_scale=7, negative_prompt=negative_prompt).images[0] image.save("DESTINATION_PATH_FOR_THE_IMAGE") Multi-adapter inference With PEFT you can combine multiple adapters for inference. In the previous example you have fine-tuned Stable Diffusion
e8dfa1c467776183e9b66635fd4136c1.txt
e8dfa1c467776183e9b66635fd4136c1.txt_chunk_19
erence With PEFT you can combine multiple adapters for inference. In the previous example you have fine-tuned Stable Diffusion on some dog images. The pipeline created based on these weights got a name - adapter_name="dog. Now, suppose you also fine-tuned this base model on images of a crochet toy. Let’s see how we can use both adapters. First, you’ll need to perform all the steps as in the single adapter inference example: Specify the base
e8dfa1c467776183e9b66635fd4136c1.txt
e8dfa1c467776183e9b66635fd4136c1.txt_chunk_20
an use both adapters. First, you’ll need to perform all the steps as in the single adapter inference example: Specify the base model. Add a function that creates a Stable Diffusion pipeline for image generation uses LoRA weights. Create a pipe with adapter_name="dog" based on the model fine-tuned on dog images. Next, you’re going to need a few more helper functions. To load another adapter, create a load_adapter() function that leverages load_
e8dfa1c467776183e9b66635fd4136c1.txt
e8dfa1c467776183e9b66635fd4136c1.txt_chunk_21
you’re going to need a few more helper functions. To load another adapter, create a load_adapter() function that leverages load_adapter() method of PeftModel (e.g. pipe.unet.load_adapter(peft_model_path, adapter_name)): Copied def load_adapter(pipe, ckpt_dir, adapter_name): unet_sub_dir = os.path.join(ckpt_dir, "unet") text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder") pipe.unet.load_adapter(unet_sub_dir, adapter_name=
e8dfa1c467776183e9b66635fd4136c1.txt
e8dfa1c467776183e9b66635fd4136c1.txt_chunk_22
"unet") text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder") pipe.unet.load_adapter(unet_sub_dir, adapter_name=adapter_name) if os.path.exists(text_encoder_sub_dir): pipe.text_encoder.load_adapter(text_encoder_sub_dir, adapter_name=adapter_name) To switch between adapters, write a function that uses set_adapter() method of PeftModel (see pipe.unet.set_adapter(adapter_name)) Copied def set_adapter(pipe, adapter_na
e8dfa1c467776183e9b66635fd4136c1.txt
e8dfa1c467776183e9b66635fd4136c1.txt_chunk_23
that uses set_adapter() method of PeftModel (see pipe.unet.set_adapter(adapter_name)) Copied def set_adapter(pipe, adapter_name): pipe.unet.set_adapter(adapter_name) if isinstance(pipe.text_encoder, PeftModel): pipe.text_encoder.set_adapter(adapter_name) Finally, add a function to create weighted LoRA adapter. Copied def create_weighted_lora_adapter(pipe, adapters, weights, adapter_name="default"): pipe.unet.add_weigh
e8dfa1c467776183e9b66635fd4136c1.txt
e8dfa1c467776183e9b66635fd4136c1.txt_chunk_24
A adapter. Copied def create_weighted_lora_adapter(pipe, adapters, weights, adapter_name="default"): pipe.unet.add_weighted_adapter(adapters, weights, adapter_name) if isinstance(pipe.text_encoder, PeftModel): pipe.text_encoder.add_weighted_adapter(adapters, weights, adapter_name) return pipe Let’s load the second adapter from the model fine-tuned on images of a crochet toy, and give it a unique name: Copied load_ada
e8dfa1c467776183e9b66635fd4136c1.txt
e8dfa1c467776183e9b66635fd4136c1.txt_chunk_25
et’s load the second adapter from the model fine-tuned on images of a crochet toy, and give it a unique name: Copied load_adapter(pipe, Path("path-to-the-second-saved-model"), adapter_name="crochet") Create a pipeline using weighted adapters: Copied pipe = create_weighted_lora_adapter(pipe, ["crochet", "dog"], [1.0, 1.05], adapter_name="crochet_dog") Now you can switch between adapters. If you’d like to generate more dog images, set the a
e8dfa1c467776183e9b66635fd4136c1.txt
e8dfa1c467776183e9b66635fd4136c1.txt_chunk_26
.0, 1.05], adapter_name="crochet_dog") Now you can switch between adapters. If you’d like to generate more dog images, set the adapter to "dog": Copied set_adapter(pipe, adapter_name="dog") prompt = "sks dog in a supermarket isle" negative_prompt = "low quality, blurry, unfinished" image = pipe(prompt, num_inference_steps=50, guidance_scale=7, negative_prompt=negative_prompt).images[0] image In the same way, you can switch to the second ada
e8dfa1c467776183e9b66635fd4136c1.txt
e8dfa1c467776183e9b66635fd4136c1.txt_chunk_27
_steps=50, guidance_scale=7, negative_prompt=negative_prompt).images[0] image In the same way, you can switch to the second adapter: Copied set_adapter(pipe, adapter_name="crochet") prompt = "a fish rendered in the style of <1>" negative_prompt = "low quality, blurry, unfinished" image = pipe(prompt, num_inference_steps=50, guidance_scale=7, negative_prompt=negative_prompt).images[0] image Finally, you can use combined weighted adapters:
e8dfa1c467776183e9b66635fd4136c1.txt
e8dfa1c467776183e9b66635fd4136c1.txt_chunk_28
_steps=50, guidance_scale=7, negative_prompt=negative_prompt).images[0] image Finally, you can use combined weighted adapters: Copied set_adapter(pipe, adapter_name="crochet_dog") prompt = "sks dog rendered in the style of <1>, close up portrait, 4K HD" negative_prompt = "low quality, blurry, unfinished" image = pipe(prompt, num_inference_steps=50, guidance_scale=7, negative_prompt=negative_prompt).images[0] image
e8dfa1c467776183e9b66635fd4136c1.txt
e8dfa1c467776183e9b66635fd4136c1.txt_chunk_29
ipe(prompt, num_inference_steps=50, guidance_scale=7, negative_prompt=negative_prompt).images[0] image
e8dfa1c467776183e9b66635fd4136c1.txt
80d498a0b94c0d7f9fccf89ad8868dfc.txt_chunk_1
LoRA for token classification Low-Rank Adaptation (LoRA) is a reparametrization method that aims to reduce the number of trainable parameters with low-rank representations. The weight matrix is broken down into low-rank matrices that are trained and updated. All the pretrained model parameters remain frozen. After training, the low-rank matrices are added back to the original weights. This makes it more efficient to store and train a LoRA mod
80d498a0b94c0d7f9fccf89ad8868dfc.txt
80d498a0b94c0d7f9fccf89ad8868dfc.txt_chunk_2
aining, the low-rank matrices are added back to the original weights. This makes it more efficient to store and train a LoRA model because there are significantly fewer parameters. 💡 Read LoRA: Low-Rank Adaptation of Large Language Models to learn more about LoRA. This guide will show you how to train a roberta-large model with LoRA on the BioNLP2004 dataset for token classification. Before you begin, make sure you have all the necessary librar
80d498a0b94c0d7f9fccf89ad8868dfc.txt
80d498a0b94c0d7f9fccf89ad8868dfc.txt_chunk_3
odel with LoRA on the BioNLP2004 dataset for token classification. Before you begin, make sure you have all the necessary libraries installed: Copied !pip install -q peft transformers datasets evaluate seqeval Setup Let’s start by importing all the necessary libraries you’ll need: 🤗 Transformers for loading the base roberta-large model and tokenizer, and handling the training loop 🤗 Datasets for loading and preparing the bionlp2004 datase
80d498a0b94c0d7f9fccf89ad8868dfc.txt
80d498a0b94c0d7f9fccf89ad8868dfc.txt_chunk_4
ase roberta-large model and tokenizer, and handling the training loop 🤗 Datasets for loading and preparing the bionlp2004 dataset for training 🤗 Evaluate for evaluating the model’s performance 🤗 PEFT for setting up the LoRA configuration and creating the PEFT model Copied from datasets import load_dataset from transformers import ( AutoModelForTokenClassification, AutoTokenizer, DataCollatorForTokenClassification, TrainingArg
80d498a0b94c0d7f9fccf89ad8868dfc.txt
80d498a0b94c0d7f9fccf89ad8868dfc.txt_chunk_5
formers import ( AutoModelForTokenClassification, AutoTokenizer, DataCollatorForTokenClassification, TrainingArguments, Trainer, ) from peft import get_peft_config, PeftModel, PeftConfig, get_peft_model, LoraConfig, TaskType import evaluate import torch import numpy as np model_checkpoint = "roberta-large" lr = 1e-3 batch_size = 16 num_epochs = 10 Load dataset and metric The BioNLP2004 dataset includes tokens and tags fo
80d498a0b94c0d7f9fccf89ad8868dfc.txt
80d498a0b94c0d7f9fccf89ad8868dfc.txt_chunk_6
a-large" lr = 1e-3 batch_size = 16 num_epochs = 10 Load dataset and metric The BioNLP2004 dataset includes tokens and tags for biological structures like DNA, RNA and proteins. Load the dataset: Copied bionlp = load_dataset("tner/bionlp2004") bionlp["train"][0] { "tokens": [ "Since", "HUVECs", "released", "superoxide", "anions", "in", "response", "to", "TNF",
80d498a0b94c0d7f9fccf89ad8868dfc.txt
80d498a0b94c0d7f9fccf89ad8868dfc.txt_chunk_7
"released", "superoxide", "anions", "in", "response", "to", "TNF", ",", "and", "H2O2", "induces", "VCAM-1", ",", "PDTC", "may", "act", "as", "a", "radical", "scavenger", ".", ], "tags": [0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0], } The tags val
80d498a0b94c0d7f9fccf89ad8868dfc.txt
80d498a0b94c0d7f9fccf89ad8868dfc.txt_chunk_8
cavenger", ".", ], "tags": [0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0], } The tags values are defined in the label ids dictionary. The letter that prefixes each label indicates the token position: B is for the first token of an entity, I is for a token inside the entity, and 0 is for a token that is not part of an entity. Copied { "O": 0, "B-DNA": 1, "I-DNA": 2, "B-protein": 3, "I
80d498a0b94c0d7f9fccf89ad8868dfc.txt
80d498a0b94c0d7f9fccf89ad8868dfc.txt_chunk_9
is for a token that is not part of an entity. Copied { "O": 0, "B-DNA": 1, "I-DNA": 2, "B-protein": 3, "I-protein": 4, "B-cell_type": 5, "I-cell_type": 6, "B-cell_line": 7, "I-cell_line": 8, "B-RNA": 9, "I-RNA": 10, } Then load the seqeval framework which includes several metrics - precision, accuracy, F1, and recall - for evaluating sequence labeling tasks. Copied seqeval = evaluate.load("seqev
80d498a0b94c0d7f9fccf89ad8868dfc.txt
80d498a0b94c0d7f9fccf89ad8868dfc.txt_chunk_10
metrics - precision, accuracy, F1, and recall - for evaluating sequence labeling tasks. Copied seqeval = evaluate.load("seqeval") Now you can write an evaluation function to compute the metrics from the model predictions and labels, and return the precision, recall, F1, and accuracy scores: Copied label_list = [ "O", "B-DNA", "I-DNA", "B-protein", "I-protein", "B-cell_type", "I-cell_type", "B-cell_line",
80d498a0b94c0d7f9fccf89ad8868dfc.txt
80d498a0b94c0d7f9fccf89ad8868dfc.txt_chunk_11
"O", "B-DNA", "I-DNA", "B-protein", "I-protein", "B-cell_type", "I-cell_type", "B-cell_line", "I-cell_line", "B-RNA", "I-RNA", ] def compute_metrics(p): predictions, labels = p predictions = np.argmax(predictions, axis=2) true_predictions = [ [label_list[p] for (p, l) in zip(prediction, label) if l != -100] for prediction, label in zip(predictions, labels) ] true
80d498a0b94c0d7f9fccf89ad8868dfc.txt
80d498a0b94c0d7f9fccf89ad8868dfc.txt_chunk_12
t[p] for (p, l) in zip(prediction, label) if l != -100] for prediction, label in zip(predictions, labels) ] true_labels = [ [label_list[l] for (p, l) in zip(prediction, label) if l != -100] for prediction, label in zip(predictions, labels) ] results = seqeval.compute(predictions=true_predictions, references=true_labels) return { "precision": results["overall_precision"], "recall": res
80d498a0b94c0d7f9fccf89ad8868dfc.txt
80d498a0b94c0d7f9fccf89ad8868dfc.txt_chunk_13
=true_predictions, references=true_labels) return { "precision": results["overall_precision"], "recall": results["overall_recall"], "f1": results["overall_f1"], "accuracy": results["overall_accuracy"], } Preprocess dataset Initialize a tokenizer and make sure you set is_split_into_words=True because the text sequence has already been split into words. However, this doesn’t mean it is tokenized yet (eve
80d498a0b94c0d7f9fccf89ad8868dfc.txt
80d498a0b94c0d7f9fccf89ad8868dfc.txt_chunk_14
into_words=True because the text sequence has already been split into words. However, this doesn’t mean it is tokenized yet (even though it may look like it!), and you’ll need to further tokenize the words into subwords. Copied tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, add_prefix_space=True) You’ll also need to write a function to: Map each token to their respective word with the word_ids method. Ignore the special tokens b
80d498a0b94c0d7f9fccf89ad8868dfc.txt
80d498a0b94c0d7f9fccf89ad8868dfc.txt_chunk_15
also need to write a function to: Map each token to their respective word with the word_ids method. Ignore the special tokens by setting them to -100. Label the first token of a given entity. Copied def tokenize_and_align_labels(examples): tokenized_inputs = tokenizer(examples["tokens"], truncation=True, is_split_into_words=True) labels = [] for i, label in enumerate(examples[f"tags"]): word_ids = tokenized_inputs.word_
80d498a0b94c0d7f9fccf89ad8868dfc.txt
80d498a0b94c0d7f9fccf89ad8868dfc.txt_chunk_16
it_into_words=True) labels = [] for i, label in enumerate(examples[f"tags"]): word_ids = tokenized_inputs.word_ids(batch_index=i) previous_word_idx = None label_ids = [] for word_idx in word_ids: if word_idx is None: label_ids.append(-100) elif word_idx != previous_word_idx: label_ids.append(label[word_idx]) else: label_i
80d498a0b94c0d7f9fccf89ad8868dfc.txt
80d498a0b94c0d7f9fccf89ad8868dfc.txt_chunk_17
elif word_idx != previous_word_idx: label_ids.append(label[word_idx]) else: label_ids.append(-100) previous_word_idx = word_idx labels.append(label_ids) tokenized_inputs["labels"] = labels return tokenized_inputs Use map to apply the tokenize_and_align_labels function to the dataset: Copied tokenized_bionlp = bionlp.map(tokenize_and_align_labels, batched=True) Finally,
80d498a0b94c0d7f9fccf89ad8868dfc.txt
80d498a0b94c0d7f9fccf89ad8868dfc.txt_chunk_18
_align_labels function to the dataset: Copied tokenized_bionlp = bionlp.map(tokenize_and_align_labels, batched=True) Finally, create a data collator to pad the examples to the longest length in a batch: Copied data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer) Train Now you’re ready to create a PeftModel. Start by loading the base roberta-large model, the number of expected labels, and the id2label and label2id dic
80d498a0b94c0d7f9fccf89ad8868dfc.txt
80d498a0b94c0d7f9fccf89ad8868dfc.txt_chunk_19
ate a PeftModel. Start by loading the base roberta-large model, the number of expected labels, and the id2label and label2id dictionaries: Copied id2label = { 0: "O", 1: "B-DNA", 2: "I-DNA", 3: "B-protein", 4: "I-protein", 5: "B-cell_type", 6: "I-cell_type", 7: "B-cell_line", 8: "I-cell_line", 9: "B-RNA", 10: "I-RNA", } label2id = { "O": 0, "B-DNA": 1, "I-DNA": 2, "B-protein": 3,
80d498a0b94c0d7f9fccf89ad8868dfc.txt
80d498a0b94c0d7f9fccf89ad8868dfc.txt_chunk_20
I-cell_line", 9: "B-RNA", 10: "I-RNA", } label2id = { "O": 0, "B-DNA": 1, "I-DNA": 2, "B-protein": 3, "I-protein": 4, "B-cell_type": 5, "I-cell_type": 6, "B-cell_line": 7, "I-cell_line": 8, "B-RNA": 9, "I-RNA": 10, } model = AutoModelForTokenClassification.from_pretrained( model_checkpoint, num_labels=11, id2label=id2label, label2id=label2id ) Define the LoraConfig with: task_type, token
80d498a0b94c0d7f9fccf89ad8868dfc.txt
80d498a0b94c0d7f9fccf89ad8868dfc.txt_chunk_21
ained( model_checkpoint, num_labels=11, id2label=id2label, label2id=label2id ) Define the LoraConfig with: task_type, token classification (TaskType.TOKEN_CLS) r, the dimension of the low-rank matrices lora_alpha, scaling factor for the weight matrices lora_dropout, dropout probability of the LoRA layers bias, set to all to train all bias parameters 💡 The weight matrix is scaled by lora_alpha/r, and a higher lora_alpha value assigns more we
80d498a0b94c0d7f9fccf89ad8868dfc.txt
80d498a0b94c0d7f9fccf89ad8868dfc.txt_chunk_22
to all to train all bias parameters 💡 The weight matrix is scaled by lora_alpha/r, and a higher lora_alpha value assigns more weight to the LoRA activations. For performance, we recommend setting bias to None first, and then lora_only, before trying all. Copied peft_config = LoraConfig( task_type=TaskType.TOKEN_CLS, inference_mode=False, r=16, lora_alpha=16, lora_dropout=0.1, bias="all" ) Pass the base model and peft_config to the get_pe
80d498a0b94c0d7f9fccf89ad8868dfc.txt
80d498a0b94c0d7f9fccf89ad8868dfc.txt_chunk_23
CLS, inference_mode=False, r=16, lora_alpha=16, lora_dropout=0.1, bias="all" ) Pass the base model and peft_config to the get_peft_model() function to create a PeftModel. You can check out how much more efficient training the PeftModel is compared to fully training the base model by printing out the trainable parameters: Copied model = get_peft_model(model, peft_config) model.print_trainable_parameters() "trainable params: 1855499 || all par
80d498a0b94c0d7f9fccf89ad8868dfc.txt
80d498a0b94c0d7f9fccf89ad8868dfc.txt_chunk_24
s: Copied model = get_peft_model(model, peft_config) model.print_trainable_parameters() "trainable params: 1855499 || all params: 355894283 || trainable%: 0.5213624069370061" From the 🤗 Transformers library, create a TrainingArguments class and specify where you want to save the model to, the training hyperparameters, how to evaluate the model, and when to save the checkpoints: Copied training_args = TrainingArguments( output_dir="rob
80d498a0b94c0d7f9fccf89ad8868dfc.txt
80d498a0b94c0d7f9fccf89ad8868dfc.txt_chunk_25
s, how to evaluate the model, and when to save the checkpoints: Copied training_args = TrainingArguments( output_dir="roberta-large-lora-token-classification", learning_rate=lr, per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, num_train_epochs=num_epochs, weight_decay=0.01, evaluation_strategy="epoch", save_strategy="epoch", load_best_model_at_end=True, ) Pass the model, Train
80d498a0b94c0d7f9fccf89ad8868dfc.txt
80d498a0b94c0d7f9fccf89ad8868dfc.txt_chunk_26
decay=0.01, evaluation_strategy="epoch", save_strategy="epoch", load_best_model_at_end=True, ) Pass the model, TrainingArguments, datasets, tokenizer, data collator and evaluation function to the Trainer class. The Trainer handles the training loop for you, and when you’re ready, call train to begin! Copied trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_bionlp["train"], eval_dataset=to
80d498a0b94c0d7f9fccf89ad8868dfc.txt
80d498a0b94c0d7f9fccf89ad8868dfc.txt_chunk_27
ied trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_bionlp["train"], eval_dataset=tokenized_bionlp["validation"], tokenizer=tokenizer, data_collator=data_collator, compute_metrics=compute_metrics, ) trainer.train() Share model Once training is complete, you can store and share your model on the Hub if you’d like. Log in to your Hugging Face account and enter your token when prompted:
80d498a0b94c0d7f9fccf89ad8868dfc.txt
80d498a0b94c0d7f9fccf89ad8868dfc.txt_chunk_28
n store and share your model on the Hub if you’d like. Log in to your Hugging Face account and enter your token when prompted: Copied from huggingface_hub import notebook_login notebook_login() Upload the model to a specific model repository on the Hub with the push_to_hub method: Copied model.push_to_hub("your-name/roberta-large-lora-token-classification") Inference To use your model for inference, load the configuration and model:
80d498a0b94c0d7f9fccf89ad8868dfc.txt
80d498a0b94c0d7f9fccf89ad8868dfc.txt_chunk_29
name/roberta-large-lora-token-classification") Inference To use your model for inference, load the configuration and model: Copied peft_model_id = "stevhliu/roberta-large-lora-token-classification" config = PeftConfig.from_pretrained(peft_model_id) inference_model = AutoModelForTokenClassification.from_pretrained( config.base_model_name_or_path, num_labels=11, id2label=id2label, label2id=label2id ) tokenizer = AutoTokenizer.from_pretr
80d498a0b94c0d7f9fccf89ad8868dfc.txt
80d498a0b94c0d7f9fccf89ad8868dfc.txt_chunk_30
( config.base_model_name_or_path, num_labels=11, id2label=id2label, label2id=label2id ) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) model = PeftModel.from_pretrained(inference_model, peft_model_id) Get some text to tokenize: Copied text = "The activation of IL-2 gene expression and NF-kappa B through CD28 requires reactive oxygen production by 5-lipoxygenase." inputs = tokenizer(text, return_tensors="pt") Pa
80d498a0b94c0d7f9fccf89ad8868dfc.txt
80d498a0b94c0d7f9fccf89ad8868dfc.txt_chunk_31
NF-kappa B through CD28 requires reactive oxygen production by 5-lipoxygenase." inputs = tokenizer(text, return_tensors="pt") Pass the inputs to the model, and print out the model prediction for each token: Copied with torch.no_grad(): logits = model(**inputs).logits tokens = inputs.tokens() predictions = torch.argmax(logits, dim=2) for token, prediction in zip(tokens, predictions[0].numpy()): print((token, model.config.id2label[pr
80d498a0b94c0d7f9fccf89ad8868dfc.txt
80d498a0b94c0d7f9fccf89ad8868dfc.txt_chunk_32
.argmax(logits, dim=2) for token, prediction in zip(tokens, predictions[0].numpy()): print((token, model.config.id2label[prediction])) ("<s>", "O") ("The", "O") ("Ġactivation", "O") ("Ġof", "O") ("ĠIL", "B-DNA") ("-", "O") ("2", "I-DNA") ("Ġgene", "O") ("Ġexpression", "O") ("Ġand", "O") ("ĠNF", "B-protein") ("-", "O") ("k", "I-protein") ("appa", "I-protein") ("ĠB", "I-protein") ("Ġthrough", "O") ("ĠCD", "B-protein") ("28", "I-protein") ("Ġ
80d498a0b94c0d7f9fccf89ad8868dfc.txt
80d498a0b94c0d7f9fccf89ad8868dfc.txt_chunk_33
"O") ("k", "I-protein") ("appa", "I-protein") ("ĠB", "I-protein") ("Ġthrough", "O") ("ĠCD", "B-protein") ("28", "I-protein") ("Ġrequires", "O") ("Ġreactive", "O") ("Ġoxygen", "O") ("Ġproduction", "O") ("Ġby", "O") ("Ġ5", "B-protein") ("-", "O") ("lip", "I-protein") ("oxy", "I-protein") ("gen", "I-protein") ("ase", "I-protein") (".", "O") ("</s>", "O")
80d498a0b94c0d7f9fccf89ad8868dfc.txt
80d498a0b94c0d7f9fccf89ad8868dfc.txt_chunk_34
rotein") (".", "O") ("</s>", "O")
80d498a0b94c0d7f9fccf89ad8868dfc.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_1
int8 training for automatic speech recognition Quantization reduces the precision of floating point data types, decreasing the memory required to store model weights. However, quantization degrades inference performance because you lose information when you reduce the precision. 8-bit or int8 quantization uses only a quarter precision, but it does not degrade performance because it doesn’t just drop the bits or data. Instead, int8 quantizatio
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_2
quarter precision, but it does not degrade performance because it doesn’t just drop the bits or data. Instead, int8 quantization rounds from one data type to another. 💡 Read the LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale paper to learn more, or you can take a look at the corresponding blog post for a gentler introduction. This guide will show you how to train a openai/whisper-large-v2 model for multilingual automatic spe
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_3
for a gentler introduction. This guide will show you how to train a openai/whisper-large-v2 model for multilingual automatic speech recognition (ASR) using a combination of int8 quantization and LoRA. You’ll train Whisper for multilingual ASR on Marathi from the Common Voice 11.0 dataset. Before you start, make sure you have all the necessary libraries installed: Copied !pip install -q peft transformers datasets accelerate evaluate jiwer bit
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_4
u have all the necessary libraries installed: Copied !pip install -q peft transformers datasets accelerate evaluate jiwer bitsandbytes Setup Let’s take care of some of the setup first so you can start training faster later. Set the CUDA_VISIBLE_DEVICES to 0 to use the first GPU on your machine. Then you can specify the model name (either a Hub model repository id or a path to a directory containing the model), language and language abbrev
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_5
fy the model name (either a Hub model repository id or a path to a directory containing the model), language and language abbreviation to train on, the task type, and the dataset name: Copied import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" model_name_or_path = "openai/whisper-large-v2" language = "Marathi" language_abbr = "mr" task = "transcribe" dataset_name = "mozilla-foundation/common_voice_11_0" You can also log in to your Hugging Fa
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_6
age_abbr = "mr" task = "transcribe" dataset_name = "mozilla-foundation/common_voice_11_0" You can also log in to your Hugging Face account to save and share your trained model on the Hub if you’d like: Copied from huggingface_hub import notebook_login notebook_login() Load dataset and metric The Common Voice 11.0 dataset contains many hours of recorded speech in many different languages. This guide uses the Marathi language as an example
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_7
0 dataset contains many hours of recorded speech in many different languages. This guide uses the Marathi language as an example, but feel free to use any other language you’re interested in. Initialize a DatasetDict structure, and load the train (load both the train+validation split into train) and test splits from the dataset into it: Copied from datasets import load_dataset from datasets import load_dataset, DatasetDict common_voice = D
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_8
he dataset into it: Copied from datasets import load_dataset from datasets import load_dataset, DatasetDict common_voice = DatasetDict() common_voice["train"] = load_dataset(dataset_name, language_abbr, split="train+validation", use_auth_token=True) common_voice["test"] = load_dataset(dataset_name, language_abbr, split="test", use_auth_token=True) common_voice["train"][0] Preprocess dataset Let’s prepare the dataset for training. Load a
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_9
split="test", use_auth_token=True) common_voice["train"][0] Preprocess dataset Let’s prepare the dataset for training. Load a feature extractor, tokenizer, and processor. You should also pass the language and task to the tokenizer and processor so they know how to process the inputs: Copied from transformers import AutoFeatureExtractor, AutoTokenizer, AutoProcessor feature_extractor = AutoFeatureExtractor.from_pretrained(model_name_or_pa
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_10
rt AutoFeatureExtractor, AutoTokenizer, AutoProcessor feature_extractor = AutoFeatureExtractor.from_pretrained(model_name_or_path) tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, language=language, task=task) processor = AutoProcessor.from_pretrained(model_name_or_path, language=language, task=task) You’ll only be training on the sentence and audio columns, so you can remove the rest of the metadata with remove_columns: Copied
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_11
ll only be training on the sentence and audio columns, so you can remove the rest of the metadata with remove_columns: Copied common_voice = common_voice.remove_columns( ["accent", "age", "client_id", "down_votes", "gender", "locale", "path", "segment", "up_votes"] ) common_voice["train"][0] { "audio": { "path": "/root/.cache/huggingface/datasets/downloads/extracted/f7e1ef6a2d14f20194999aad5040c5d4bb3ead1377de3e1bbc6e9dba34d1
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_12
"path": "/root/.cache/huggingface/datasets/downloads/extracted/f7e1ef6a2d14f20194999aad5040c5d4bb3ead1377de3e1bbc6e9dba34d18a8a/common_voice_mr_30585613.mp3", "array": array( [1.13686838e-13, -1.42108547e-13, -1.98951966e-13, ..., 4.83472422e-06, 3.54798703e-06, 1.63231743e-06] ), "sampling_rate": 48000, }, "sentence": "आईचे आजारपण वाढत चालले, तसतशी मथीही नीट खातपीतनाशी झाली.", } If you look at t
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_13
"sampling_rate": 48000, }, "sentence": "आईचे आजारपण वाढत चालले, तसतशी मथीही नीट खातपीतनाशी झाली.", } If you look at the sampling_rate, you’ll see the audio was sampled at 48kHz. The Whisper model was pretrained on audio inputs at 16kHZ which means you’ll need to downsample the audio inputs to match what the model was pretrained on. Downsample the audio by using the cast_column method on the audio column, and set the sampling_rate to
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_14
model was pretrained on. Downsample the audio by using the cast_column method on the audio column, and set the sampling_rate to 16kHz. The audio input is resampled on the fly the next time you call it: Copied from datasets import Audio common_voice = common_voice.cast_column("audio", Audio(sampling_rate=16000)) common_voice["train"][0] { "audio": { "path": "/root/.cache/huggingface/datasets/downloads/extracted/f7e1ef6a2d14f20194
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_15
mon_voice["train"][0] { "audio": { "path": "/root/.cache/huggingface/datasets/downloads/extracted/f7e1ef6a2d14f20194999aad5040c5d4bb3ead1377de3e1bbc6e9dba34d18a8a/common_voice_mr_30585613.mp3", "array": array( [-3.06954462e-12, -3.63797881e-12, -4.54747351e-12, ..., -7.74800901e-06, -1.74738125e-06, 4.36312439e-06] ), "sampling_rate": 16000, }, "sentence": "आईचे आजारपण वाढत चालले, तसतशी मथ
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_16
4738125e-06, 4.36312439e-06] ), "sampling_rate": 16000, }, "sentence": "आईचे आजारपण वाढत चालले, तसतशी मथीही नीट खातपीतनाशी झाली.", } Once you’ve cleaned up the dataset, you can write a function to generate the correct model inputs. The function should: Resample the audio inputs to 16kHZ by loading the audio column. Compute the input features from the audio array using the feature extractor. Tokenize the sentence column t
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_17
ng the audio column. Compute the input features from the audio array using the feature extractor. Tokenize the sentence column to the input labels. Copied def prepare_dataset(batch): audio = batch["audio"] batch["input_features"] = feature_extractor(audio["array"], sampling_rate=audio["sampling_rate"]).input_features[0] batch["labels"] = tokenizer(batch["sentence"]).input_ids return batch Apply the prepare_dataset function to
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_18
_features[0] batch["labels"] = tokenizer(batch["sentence"]).input_ids return batch Apply the prepare_dataset function to the dataset with the map function, and set the num_proc argument to 2 to enable multiprocessing (if map hangs, then set num_proc=1): Copied common_voice = common_voice.map(prepare_dataset, remove_columns=common_voice.column_names["train"], num_proc=2) Finally, create a DataCollator class to pad the labels in each b
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_19
remove_columns=common_voice.column_names["train"], num_proc=2) Finally, create a DataCollator class to pad the labels in each batch to the maximum length, and replace padding with -100 so they’re ignored by the loss function. Then initialize an instance of the data collator: Copied import torch from dataclasses import dataclass from typing import Any, Dict, List, Union @dataclass class DataCollatorSpeechSeq2SeqWithPadding: processor:
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_20
port dataclass from typing import Any, Dict, List, Union @dataclass class DataCollatorSpeechSeq2SeqWithPadding: processor: Any def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: input_features = [{"input_features": feature["input_features"]} for feature in features] batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt") label_fe
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_21
feature in features] batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt") label_features = [{"input_ids": feature["labels"]} for feature in features] labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt") labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) if (labels[:, 0] == self.processor.tokenizer.bos_token_id
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_22
ut_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) if (labels[:, 0] == self.processor.tokenizer.bos_token_id).all().cpu().item(): labels = labels[:, 1:] batch["labels"] = labels return batch data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor) Train Now that the dataset is ready, you can turn your attention to the model. Start by loading the pretrained openai/whisper-la
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_23
ain Now that the dataset is ready, you can turn your attention to the model. Start by loading the pretrained openai/whisper-large-v2 model from AutoModelForSpeechSeq2Seq, and make sure to set the load_in_8bit argument to True to enable int8 quantization. The device_map=auto argument automatically determines how to load and store the model weights: Copied from transformers import AutoModelForSpeechSeq2Seq model = AutoModelForSpeechSeq2Seq.
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_24
ad and store the model weights: Copied from transformers import AutoModelForSpeechSeq2Seq model = AutoModelForSpeechSeq2Seq.from_pretrained(model_name_or_path, load_in_8bit=True, device_map="auto") You should configure forced_decoder_ids=None because no tokens are used before sampling, and you won’t need to suppress any tokens during generation either: Copied model.config.forced_decoder_ids = None model.config.suppress_tokens = [] To get
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_25
s any tokens during generation either: Copied model.config.forced_decoder_ids = None model.config.suppress_tokens = [] To get the model ready for int8 quantization, use the utility function prepare_model_for_int8_training to handle the following: casts all the non int8 modules to full precision (fp32) for stability adds a forward hook to the input embedding layer to calculate the gradients of the input hidden states enables gradient checkpoi
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_26
adds a forward hook to the input embedding layer to calculate the gradients of the input hidden states enables gradient checkpointing for more memory-efficient training Copied from peft import prepare_model_for_int8_training model = prepare_model_for_int8_training(model) Let’s also apply LoRA to the training to make it even more efficient. Load a LoraConfig and configure the following parameters: r, the dimension of the low-rank matrices lo
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_27
e it even more efficient. Load a LoraConfig and configure the following parameters: r, the dimension of the low-rank matrices lora_alpha, scaling factor for the weight matrices target_modules, the name of the attention matrices to apply LoRA to (q_proj and v_proj, or query and value in this case) lora_dropout, dropout probability of the LoRA layers bias, set to none 💡 The weight matrix is scaled by lora_alpha/r, and a higher lora_alpha value as
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_28
probability of the LoRA layers bias, set to none 💡 The weight matrix is scaled by lora_alpha/r, and a higher lora_alpha value assigns more weight to the LoRA activations. For performance, we recommend setting bias to None first, and then lora_only, before trying all. Copied from peft import LoraConfig, PeftModel, LoraModel, LoraConfig, get_peft_model config = LoraConfig(r=32, lora_alpha=64, target_modules=["q_proj", "v_proj"], lora_dropout=
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_29
raModel, LoraConfig, get_peft_model config = LoraConfig(r=32, lora_alpha=64, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none") After you set up the LoraConfig, wrap it and the base model with the get_peft_model() function to create a PeftModel. Print out the number of trainable parameters to see how much more efficient LoRA is compared to fully training the model! Copied model = get_peft_model(model, config) model.print_t
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_30
much more efficient LoRA is compared to fully training the model! Copied model = get_peft_model(model, config) model.print_trainable_parameters() "trainable params: 15728640 || all params: 1559033600 || trainable%: 1.0088711365810203" Now you’re ready to define some training hyperparameters in the Seq2SeqTrainingArguments class, such as where to save the model to, batch size, learning rate, and number of epochs to train for. The PeftModel d
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_31
guments class, such as where to save the model to, batch size, learning rate, and number of epochs to train for. The PeftModel doesn’t have the same signature as the base model, so you’ll need to explicitly set remove_unused_columns=False and label_names=["labels"]. Copied from transformers import Seq2SeqTrainingArguments training_args = Seq2SeqTrainingArguments( output_dir="your-name/int8-whisper-large-v2-asr", per_device_train_bat
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_32
uments training_args = Seq2SeqTrainingArguments( output_dir="your-name/int8-whisper-large-v2-asr", per_device_train_batch_size=8, gradient_accumulation_steps=1, learning_rate=1e-3, warmup_steps=50, num_train_epochs=3, evaluation_strategy="epoch", fp16=True, per_device_eval_batch_size=8, generation_max_length=128, logging_steps=25, remove_unused_columns=False, label_names=["labels"], ) It is a
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_33
e=8, generation_max_length=128, logging_steps=25, remove_unused_columns=False, label_names=["labels"], ) It is also a good idea to write a custom TrainerCallback to save model checkpoints during training: Copied from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR class SavePeftModelCallback(TrainerCallback): def on_save( self, args: TrainingArguments, state: TrainerState, control
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_34
k(TrainerCallback): def on_save( self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs, ): checkpoint_folder = os.path.join(args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}") peft_model_path = os.path.join(checkpoint_folder, "adapter_model") kwargs["model"].save_pretrained(peft_model_path) pytorch_model_path = os.path.
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_35
ckpoint_folder, "adapter_model") kwargs["model"].save_pretrained(peft_model_path) pytorch_model_path = os.path.join(checkpoint_folder, "pytorch_model.bin") if os.path.exists(pytorch_model_path): os.remove(pytorch_model_path) return control Pass the Seq2SeqTrainingArguments, model, datasets, data collator, tokenizer, and callback to the Seq2SeqTrainer. You can optionally set model.config.use_cache = F
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_36
model, datasets, data collator, tokenizer, and callback to the Seq2SeqTrainer. You can optionally set model.config.use_cache = False to silence any warnings. Once everything is ready, call train to start training! Copied from transformers import Seq2SeqTrainer, TrainerCallback, Seq2SeqTrainingArguments, TrainerState, TrainerControl trainer = Seq2SeqTrainer( args=training_args, model=model, train_dataset=common_voice["train"],
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_37
, TrainerControl trainer = Seq2SeqTrainer( args=training_args, model=model, train_dataset=common_voice["train"], eval_dataset=common_voice["test"], data_collator=data_collator, tokenizer=processor.feature_extractor, callbacks=[SavePeftModelCallback], ) model.config.use_cache = False trainer.train() Evaluate Word error rate (WER) is a common metric for evaluating ASR models. Load the WER metric from 🤗 Evaluate:
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_38
.train() Evaluate Word error rate (WER) is a common metric for evaluating ASR models. Load the WER metric from 🤗 Evaluate: Copied import evaluate metric = evaluate.load("wer") Write a loop to evaluate the model performance. Set the model to evaluation mode first, and write the loop with torch.cuda.amp.autocast() because int8 training requires autocasting. Then, pass a batch of examples to the model to evaluate. Get the decoded prediction
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_39
because int8 training requires autocasting. Then, pass a batch of examples to the model to evaluate. Get the decoded predictions and labels, and add them as a batch to the WER metric before calling compute to get the final WER score: Copied from torch.utils.data import DataLoader from tqdm import tqdm import numpy as np import gc eval_dataloader = DataLoader(common_voice["test"], batch_size=8, collate_fn=data_collator) model.eval() for st
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_40
as np import gc eval_dataloader = DataLoader(common_voice["test"], batch_size=8, collate_fn=data_collator) model.eval() for step, batch in enumerate(tqdm(eval_dataloader)): with torch.cuda.amp.autocast(): with torch.no_grad(): generated_tokens = ( model.generate( input_features=batch["input_features"].to("cuda"), decoder_input_ids=batch["labels"][:, :4].to("cuda")
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_41
input_features=batch["input_features"].to("cuda"), decoder_input_ids=batch["labels"][:, :4].to("cuda"), max_new_tokens=255, ) .cpu() .numpy() ) labels = batch["labels"].cpu().numpy() labels = np.where(labels != -100, labels, tokenizer.pad_token_id) decoded_preds = tokenizer.batch_decode(generated_tokens,
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_42
= np.where(labels != -100, labels, tokenizer.pad_token_id) decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) metric.add_batch( predictions=decoded_preds, references=decoded_labels, ) del generated_tokens, labels, batch gc.collect() wer = 100 * metric.co
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_43
references=decoded_labels, ) del generated_tokens, labels, batch gc.collect() wer = 100 * metric.compute() print(f"{wer=}") Share model Once you’re happy with your results, you can upload your model to the Hub with the push_to_hub method: Copied model.push_to_hub("your-name/int8-whisper-large-v2-asr") Inference Let’s test the model out now! Instantiate the model configuration from PeftConfig, and from here,
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_44
er-large-v2-asr") Inference Let’s test the model out now! Instantiate the model configuration from PeftConfig, and from here, you can use the configuration to load the base and PeftModel, tokenizer, processor, and feature extractor. Remember to define the language and task in the tokenizer, processor, and forced_decoder_ids: Copied from peft import PeftModel, PeftConfig peft_model_id = "smangrul/openai-whisper-large-v2-LORA-colab" langua
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_45
oder_ids: Copied from peft import PeftModel, PeftConfig peft_model_id = "smangrul/openai-whisper-large-v2-LORA-colab" language = "Marathi" task = "transcribe" peft_config = PeftConfig.from_pretrained(peft_model_id) model = WhisperForConditionalGeneration.from_pretrained( peft_config.base_model_name_or_path, load_in_8bit=True, device_map="auto" ) model = PeftModel.from_pretrained(model, peft_model_id) tokenizer = WhisperTokenizer.from_pr
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_46
d_in_8bit=True, device_map="auto" ) model = PeftModel.from_pretrained(model, peft_model_id) tokenizer = WhisperTokenizer.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task) processor = WhisperProcessor.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task) feature_extractor = processor.feature_extractor forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task=task)
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_47
ure_extractor = processor.feature_extractor forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task=task) Load an audio sample (you can listen to it in the Dataset Preview) to transcribe, and the AutomaticSpeechRecognitionPipeline: Copied from transformers import AutomaticSpeechRecognitionPipeline audio = "https://huggingface.co/datasets/stevhliu/dummy/resolve/main/mrt_01523_00028548203.wav" pipeline = AutomaticSpeechR
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_48
ine audio = "https://huggingface.co/datasets/stevhliu/dummy/resolve/main/mrt_01523_00028548203.wav" pipeline = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor) Then use the pipeline with autocast as a context manager on the audio sample: Copied with torch.cuda.amp.autocast(): text = pipe(audio, generate_kwargs={"forced_decoder_ids": forced_decoder_ids}, max_new_tokens=255)["text"]
54c6965499192fc36ce403c8b6b06123.txt
54c6965499192fc36ce403c8b6b06123.txt_chunk_49
a.amp.autocast(): text = pipe(audio, generate_kwargs={"forced_decoder_ids": forced_decoder_ids}, max_new_tokens=255)["text"] text "मी तुमच्यासाठी काही करू शकतो का?"
54c6965499192fc36ce403c8b6b06123.txt
da3a9a59e28032fcc1512bc893e65de2.txt_chunk_1
Quicktour 🤗 PEFT contains parameter-efficient finetuning methods for training large pretrained models. The traditional paradigm is to finetune all of a model’s parameters for each downstream task, but this is becoming exceedingly costly and impractical because of the enormous number of parameters in models today. Instead, it is more efficient to train a smaller number of prompt parameters or use a reparametrization method like low-rank adapta
da3a9a59e28032fcc1512bc893e65de2.txt