File size: 7,953 Bytes
2f50c94 b6a2224 37185e0 8d271f0 37185e0 0c3b71f 41f95b2 0707373 41f95b2 0707373 984b0e1 37185e0 22cd231 85f80a2 22cd231 f18b18e 22cd231 0c3b71f b6a2224 85f80a2 c4aa364 984b0e1 c4aa364 e7bb3db 0c3b71f f18b18e 984b0e1 0c3b71f e7bb3db 8d271f0 67c2abc 8d271f0 f18b18e 8d271f0 67c2abc 8d271f0 b682b3b f18b18e b020659 85f80a2 b020659 b682b3b 8d271f0 f18b18e 8d271f0 bd877a9 d837646 656c777 8b6b365 83c06a2 85f80a2 f7c45b5 85f80a2 8b6b365 85f80a2 f7c45b5 83c06a2 85f80a2 83c06a2 cc8da7b 83c06a2 656c777 22cd231 f18b18e 7ea79b0 ebcf536 7ea79b0 0c3b71f 85f80a2 0c3b71f 85f80a2 0c3b71f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import gradio as gr
import requests
import os
import json
class AutonomousEmailAgent:
def __init__(self, linkedin_url, company_name, role, word_limit, user_name, email, phone, linkedin):
self.linkedin_url = linkedin_url
self.company_name = company_name
self.role = role
self.word_limit = word_limit
self.user_name = user_name
self.email = email
self.phone = phone
self.linkedin = linkedin
self.bio = None
self.skills = []
self.experiences = []
self.company_info = None
self.role_description = None
self.attempts = 0
def fetch_linkedin_data(self):
proxycurl_api_key = os.getenv("PROXYCURL_API_KEY")
if not self.linkedin_url:
print("Action: No LinkedIn URL provided, using default bio.")
self.bio = "A professional with diverse experience."
self.skills = ["Adaptable", "Hardworking"]
self.experiences = ["Worked across various industries"]
else:
print("Action: Fetching LinkedIn data via Proxycurl.")
headers = {"Authorization": f"Bearer {proxycurl_api_key}"}
url = f"https://nubela.co/proxycurl/api/v2/linkedin?url={self.linkedin_url}"
response = requests.get(url, headers=headers)
if response.status_code == 200:
data = response.json()
self.bio = data.get("summary", "No bio available")
self.skills = data.get("skills", [])
self.experiences = data.get("experiences", [])
print("LinkedIn data fetched successfully.")
else:
print("Error: Unable to fetch LinkedIn profile. Status Code:", response.status_code)
self.use_default_profile()
def use_default_profile(self):
print("Using default profile values.")
self.bio = "A professional with a versatile background and extensive experience."
self.skills = ["Leadership", "Communication", "Problem-solving"]
self.experiences = [{"title": "Project Manager"}, {"title": "Team Leader"}]
def run(self):
self.fetch_linkedin_data()
return self.autonomous_reasoning()
def autonomous_reasoning(self):
print("Autonomous Reasoning: Letting the LLM fully reason and act on available data...")
reasoning_prompt = f"""
You are an AI agent tasked with generating a job application email using Simon Sinek's Start with Why model.
The email must begin with why the candidate is passionate about the role, then explain how their skills and
experience align with the company and role, and finally describe specific achievements that demonstrate their
capabilities. The email must not exceed {self.word_limit} words but should remain coherent and complete.
Here’s the current data:
- LinkedIn profile: {self.linkedin_url}
- Company Name: {self.company_name}
- Role: {self.role}
- Candidate's Bio: {self.bio}
- Candidate's Skills: {', '.join(self.skills)}
- Candidate's Experiences: {', '.join([exp['title'] for exp in self.experiences])}
Generate a fully coherent and complete email that fits within the word limit.
"""
return self.send_request_to_llm(reasoning_prompt)
def send_request_to_llm(self, prompt):
print("Sending request to Groq Cloud LLM...")
api_key = os.getenv("GROQ_API_KEY")
if not api_key:
print("Error: API key not found. Please set the GROQ_API_KEY environment variable.")
return "Error: API key not found."
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
data = {
"model": "llama-3.1-70b-versatile",
"messages": [{"role": "user", "content": prompt}]
}
response = requests.post("https://api.groq.com/openai/v1/chat/completions", headers=headers, json=data)
print(f"Status Code: {response.status_code}")
if response.status_code == 200:
try:
result = response.json()
print(f"LLM Response: {json.dumps(result, indent=2)}")
choices = result.get("choices", [])
if choices and "message" in choices[0]:
content = choices[0]["message"]["content"]
print(f"Content: {content}")
return self.format_email(content)
else:
print("Error: Unrecognized format in LLM response.")
return "Error: Unrecognized response format."
except json.JSONDecodeError:
print("Error: Response from Groq Cloud LLM is not valid JSON.")
return "Error: Response is not in JSON format."
else:
print(f"Error: Unable to connect to Groq Cloud LLM. Status Code: {response.status_code}")
return "Error: Unable to generate response."
def format_email(self, llm_response):
# Split the response into paragraphs for better formatting
paragraphs = [line.strip() for line in llm_response.split("\n") if line.strip()]
formatted_email = "\n\n".join(paragraphs)
# Add the closing section with a call to action
closing_section = (
"\n\nI would appreciate the opportunity to discuss how my background, skills, and passion align with the goals "
f"of {self.company_name}. I am eager to contribute to your mission and support the development of future leaders.\n\n"
"Thank you for considering my application. I look forward to the possibility of discussing this role further.\n"
)
# Prepare the signature
signature = (
f"Best regards,\n"
f"{self.user_name}\n"
f"Email: {self.email}\n"
f"Phone: {self.phone}\n"
f"LinkedIn: {self.linkedin}"
)
# Ensure only one "Best regards" section and remove any duplicate signatures
if "Best regards" in formatted_email:
formatted_email = formatted_email.split("Best regards")[0].strip()
return f"{formatted_email}{closing_section}\n{signature}"
# Gradio UI setup remains unchanged
def gradio_ui():
name_input = gr.Textbox(label="Your Name", placeholder="Enter your name")
company_input = gr.Textbox(label="Company Name or URL", placeholder="Enter the company name or website URL")
role_input = gr.Textbox(label="Role Applying For", placeholder="Enter the role you are applying for")
email_input = gr.Textbox(label="Your Email Address", placeholder="Enter your email address")
phone_input = gr.Textbox(label="Your Phone Number", placeholder="Enter your phone number")
linkedin_input = gr.Textbox(label="Your LinkedIn URL", placeholder="Enter your LinkedIn profile URL")
word_limit_slider = gr.Slider(minimum=50, maximum=300, step=10, label="Email Word Limit", value=150)
email_output = gr.Textbox(label="Generated Email", placeholder="Your generated email will appear here", lines=10)
def create_email(name, company_name, role, email, phone, linkedin_url, word_limit):
agent = AutonomousEmailAgent(linkedin_url, company_name, role, word_limit, name, email, phone, linkedin_url)
return agent.run()
demo = gr.Interface(
fn=create_email,
inputs=[name_input, company_input, role_input, email_input, phone_input, linkedin_input, word_limit_slider],
outputs=[email_output],
title="Email Writing AI Agent with ReAct",
description="Generate a professional email for a job application using LinkedIn data, company info, and role description.",
allow_flagging="never"
)
demo.launch()
if __name__ == "__main__":
gradio_ui()
|