|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:6300 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: BAAI/bge-base-en-v1.5 |
|
widget: |
|
- source_sentence: What are the components of Comcast's domestic distribution revenue? |
|
sentences: |
|
- Cash used in investing activities was $2.3 billion for fiscal 2023, compared to |
|
$2.1 billion for fiscal 2022. |
|
- Domestic distribution revenue primarily includes revenue generated from the distribution |
|
of our television networks operating predominantly in the United States to traditional |
|
and virtual multichannel video providers, and from NBC-affiliated and Telemundo-affiliated |
|
local broadcast television stations. Our revenue from distribution agreements |
|
is generally based on the number of subscribers receiving the programming on our |
|
television networks and a per subscriber fee. Distribution revenue also includes |
|
Peacock subscription fees. |
|
- In January 2023, Alphabet Inc. announced a reduction of its workforce, consequently |
|
recording employee severance and related charges of $2.1 billion for the year. |
|
- source_sentence: What was the noncash pre-tax impairment charge recorded due to |
|
the disposal of Vrio's operations in 2021, and what are the main components contributing |
|
to this amount? |
|
sentences: |
|
- The cash equities rate per contract (per 100 shares) for NYSE increased by 6%, |
|
from $0.045 in 2022 to $0.048 in 2023. |
|
- In the second quarter of 2021, we classified the Vrio disposal group as held-for-sale |
|
and reported the disposal group at fair value less cost to sell, which resulted |
|
in a noncash, pre-tax impairment charge of $4,555, including approximately $2,100 |
|
related to accumulated foreign currency translation adjustments and $2,500 related |
|
to property, plant and equipment and intangible assets. |
|
- 'SECRET LAIR - our internet-based storefront where MAGIC: THE GATHERING fans can |
|
purchase exclusive and limited versions of cards.' |
|
- source_sentence: What does the Corporate and Other segment include in its composition? |
|
sentences: |
|
- The segment consists of unallocated corporate expenses and administrative costs |
|
and activities not considered when evaluating segment performance as well as certain |
|
assets benefiting more than one segment. In addition, intersegment transactions |
|
are eliminated within the Corporate and Other segment. |
|
- Net cash provided by (used in) operating activities was recorded at $20,930 million |
|
for the reported year. |
|
- Forward-Looking Statements Certain statements in this report, other than purely |
|
historical information, including estimates, projections, statements relating |
|
to our business plans, objectives and expected operating results, and the assumptions |
|
upon which those statements are based, are “forward-looking statements” within |
|
the meaning of the Private Securities Litigation Reform Act of 1995, Section 27A |
|
of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of |
|
1934. |
|
- source_sentence: What was the purchase price for the repurchase of Mobility preferred |
|
interests by AT&T in 2023? |
|
sentences: |
|
- Net revenue increased $1.5 billion, or 19%, to $9.6 billion in 2023 from $8.1 |
|
billion in 2022. On a constant dollar basis, net revenue increased 20%. Comparable |
|
sales increased 13%, or 14% on a constant dollar basis. The increase in net revenue |
|
was primarily due to increased Americas net revenue. China Mainland and Rest of |
|
World net revenue also increased. |
|
- Google Services includes products and services such as ads, Android, Chrome, devices, |
|
Google Maps, Google Play, Search, and YouTube. Google Services generates revenues |
|
primarily from advertising; fees received for consumer subscription-based products |
|
such. as YouTube TV, YouTube Music and Premium, and NFL Sunday Ticket; and the |
|
sale of apps and in-app purchases and devices. |
|
- In April 2023, we also accepted the December 2022 put option notice from the AT&T |
|
pension trust and repurchased the remaining 213 million Mobility preferred interests |
|
for a purchase price, including accrued and unpaid distributions, of $5,414. |
|
- source_sentence: What is the maximum leverage ratio allowed before default under |
|
the company's credit facility? |
|
sentences: |
|
- If the company's leverage ratio exceeds 3.50 to 1, it would be in default of its |
|
revolving credit facility, impairing its ability to borrow under the facility. |
|
- Research and Development Because the industries in which the Company competes |
|
are characterized by rapid technological advances, the Company’s ability to compete |
|
successfully depends heavily upon its ability to ensure a continual and timely |
|
flow of competitive products, services and technologies to the marketplace. |
|
- Visa is focused on extending, enhancing and investing in VisaNet, their proprietary |
|
advanced transaction processing network, to offer a single connection point for |
|
facilitating payment transactions to multiple endpoints through various form factors. |
|
datasets: |
|
- philschmid/finanical-rag-embedding-dataset |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
model-index: |
|
- name: BGE base Financial Matryoshka |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 768 |
|
type: dim_768 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.6771428571428572 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.8371428571428572 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8685714285714285 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9185714285714286 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.6771428571428572 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.27904761904761904 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.17371428571428568 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09185714285714283 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.6771428571428572 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.8371428571428572 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8685714285714285 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9185714285714286 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.800782444183487 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.762721088435374 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.7655884035994069 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 512 |
|
type: dim_512 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.6828571428571428 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.8371428571428572 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8757142857142857 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.92 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.6828571428571428 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.27904761904761904 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.17514285714285713 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09199999999999998 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.6828571428571428 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.8371428571428572 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8757142857142857 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.92 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.80444342170685 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.7670583900226756 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.7699510134898729 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 256 |
|
type: dim_256 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.6757142857142857 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.8228571428571428 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8642857142857143 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9185714285714286 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.6757142857142857 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.2742857142857143 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.17285714285714285 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09185714285714283 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.6757142857142857 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.8228571428571428 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8642857142857143 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9185714285714286 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.7984105242762846 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.7599024943310656 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.7625291382895937 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 128 |
|
type: dim_128 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.6714285714285714 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.8114285714285714 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8485714285714285 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9014285714285715 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.6714285714285714 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.2704761904761904 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.16971428571428568 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09014285714285714 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.6714285714285714 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.8114285714285714 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8485714285714285 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9014285714285715 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.7872870842648211 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.7507193877551018 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.7542921487122674 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 64 |
|
type: dim_64 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.6242857142857143 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.7842857142857143 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.82 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.8828571428571429 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.6242857142857143 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.26142857142857145 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.16399999999999998 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.08828571428571429 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.6242857142857143 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.7842857142857143 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.82 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.8828571428571429 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.7546358861091382 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.7135277777777775 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.7174129354945035 |
|
name: Cosine Map@100 |
|
--- |
|
|
|
# BGE base Financial Matryoshka |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the [finanical-rag-embedding-dataset](https://huggingface.co/datasets/philschmid/finanical-rag-embedding-dataset) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- [finanical-rag-embedding-dataset](https://huggingface.co/datasets/philschmid/finanical-rag-embedding-dataset) |
|
- **Language:** en |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("bnkc123/bge-base-financial-matryoshka") |
|
# Run inference |
|
sentences = [ |
|
"What is the maximum leverage ratio allowed before default under the company's credit facility?", |
|
"If the company's leverage ratio exceeds 3.50 to 1, it would be in default of its revolving credit facility, impairing its ability to borrow under the facility.", |
|
'Research and Development Because the industries in which the Company competes are characterized by rapid technological advances, the Company’s ability to compete successfully depends heavily upon its ability to ensure a continual and timely flow of competitive products, services and technologies to the marketplace.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
|
|
* Dataset: `dim_768` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters: |
|
```json |
|
{ |
|
"truncate_dim": 768 |
|
} |
|
``` |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.6771 | |
|
| cosine_accuracy@3 | 0.8371 | |
|
| cosine_accuracy@5 | 0.8686 | |
|
| cosine_accuracy@10 | 0.9186 | |
|
| cosine_precision@1 | 0.6771 | |
|
| cosine_precision@3 | 0.279 | |
|
| cosine_precision@5 | 0.1737 | |
|
| cosine_precision@10 | 0.0919 | |
|
| cosine_recall@1 | 0.6771 | |
|
| cosine_recall@3 | 0.8371 | |
|
| cosine_recall@5 | 0.8686 | |
|
| cosine_recall@10 | 0.9186 | |
|
| **cosine_ndcg@10** | **0.8008** | |
|
| cosine_mrr@10 | 0.7627 | |
|
| cosine_map@100 | 0.7656 | |
|
|
|
#### Information Retrieval |
|
|
|
* Dataset: `dim_512` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters: |
|
```json |
|
{ |
|
"truncate_dim": 512 |
|
} |
|
``` |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.6829 | |
|
| cosine_accuracy@3 | 0.8371 | |
|
| cosine_accuracy@5 | 0.8757 | |
|
| cosine_accuracy@10 | 0.92 | |
|
| cosine_precision@1 | 0.6829 | |
|
| cosine_precision@3 | 0.279 | |
|
| cosine_precision@5 | 0.1751 | |
|
| cosine_precision@10 | 0.092 | |
|
| cosine_recall@1 | 0.6829 | |
|
| cosine_recall@3 | 0.8371 | |
|
| cosine_recall@5 | 0.8757 | |
|
| cosine_recall@10 | 0.92 | |
|
| **cosine_ndcg@10** | **0.8044** | |
|
| cosine_mrr@10 | 0.7671 | |
|
| cosine_map@100 | 0.77 | |
|
|
|
#### Information Retrieval |
|
|
|
* Dataset: `dim_256` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters: |
|
```json |
|
{ |
|
"truncate_dim": 256 |
|
} |
|
``` |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.6757 | |
|
| cosine_accuracy@3 | 0.8229 | |
|
| cosine_accuracy@5 | 0.8643 | |
|
| cosine_accuracy@10 | 0.9186 | |
|
| cosine_precision@1 | 0.6757 | |
|
| cosine_precision@3 | 0.2743 | |
|
| cosine_precision@5 | 0.1729 | |
|
| cosine_precision@10 | 0.0919 | |
|
| cosine_recall@1 | 0.6757 | |
|
| cosine_recall@3 | 0.8229 | |
|
| cosine_recall@5 | 0.8643 | |
|
| cosine_recall@10 | 0.9186 | |
|
| **cosine_ndcg@10** | **0.7984** | |
|
| cosine_mrr@10 | 0.7599 | |
|
| cosine_map@100 | 0.7625 | |
|
|
|
#### Information Retrieval |
|
|
|
* Dataset: `dim_128` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters: |
|
```json |
|
{ |
|
"truncate_dim": 128 |
|
} |
|
``` |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.6714 | |
|
| cosine_accuracy@3 | 0.8114 | |
|
| cosine_accuracy@5 | 0.8486 | |
|
| cosine_accuracy@10 | 0.9014 | |
|
| cosine_precision@1 | 0.6714 | |
|
| cosine_precision@3 | 0.2705 | |
|
| cosine_precision@5 | 0.1697 | |
|
| cosine_precision@10 | 0.0901 | |
|
| cosine_recall@1 | 0.6714 | |
|
| cosine_recall@3 | 0.8114 | |
|
| cosine_recall@5 | 0.8486 | |
|
| cosine_recall@10 | 0.9014 | |
|
| **cosine_ndcg@10** | **0.7873** | |
|
| cosine_mrr@10 | 0.7507 | |
|
| cosine_map@100 | 0.7543 | |
|
|
|
#### Information Retrieval |
|
|
|
* Dataset: `dim_64` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters: |
|
```json |
|
{ |
|
"truncate_dim": 64 |
|
} |
|
``` |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.6243 | |
|
| cosine_accuracy@3 | 0.7843 | |
|
| cosine_accuracy@5 | 0.82 | |
|
| cosine_accuracy@10 | 0.8829 | |
|
| cosine_precision@1 | 0.6243 | |
|
| cosine_precision@3 | 0.2614 | |
|
| cosine_precision@5 | 0.164 | |
|
| cosine_precision@10 | 0.0883 | |
|
| cosine_recall@1 | 0.6243 | |
|
| cosine_recall@3 | 0.7843 | |
|
| cosine_recall@5 | 0.82 | |
|
| cosine_recall@10 | 0.8829 | |
|
| **cosine_ndcg@10** | **0.7546** | |
|
| cosine_mrr@10 | 0.7135 | |
|
| cosine_map@100 | 0.7174 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### finanical-rag-embedding-dataset |
|
|
|
* Dataset: [finanical-rag-embedding-dataset](https://huggingface.co/datasets/philschmid/finanical-rag-embedding-dataset) at [e0b1781](https://huggingface.co/datasets/philschmid/finanical-rag-embedding-dataset/tree/e0b17819cf52d444066c99f4a176f5717e066300) |
|
* Size: 6,300 training samples |
|
* Columns: <code>anchor</code> and <code>positive</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | |
|
|:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 7 tokens</li><li>mean: 20.5 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 46.09 tokens</li><li>max: 512 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | |
|
|:----------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>What was the amount of premiums written by Berkshire Hathaway's Insurance Underwriting in 2023, and how did it compare to the previous year?</code> | <code>Premiums written increased $3.5 billion (24.1%) in 2023 compared to 2022. The increase was primarily due to RSUI and CapSpecialty ($2.1 billion), as well as comparative increases from BHSI and BH Direct, and to a lesser extent the other businesses. Premiums written | $ | 18,142 | | | | $ | 14,619 |</code> | |
|
| <code>What types of transportation equipment does XTRA Corporation manage in its fleet?</code> | <code>XTRA manages a diverse fleet of approximately 90,000 units located at 47 facilities throughout the U.S. The fleet includes over-the-road and storage trailers, chassis, temperature-controlled vans and flatbed trailers.</code> | |
|
| <code>What seasonal trends affect the company's sales volumes?</code> | <code>Sales volumes for the company are highest in the second fiscal quarter due to seasonal influences, particularly during the spring season in the regions it serves.</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: epoch |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 16 |
|
- `gradient_accumulation_steps`: 16 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 4 |
|
- `lr_scheduler_type`: cosine |
|
- `warmup_ratio`: 0.1 |
|
- `bf16`: True |
|
- `tf32`: True |
|
- `load_best_model_at_end`: True |
|
- `optim`: adamw_torch_fused |
|
- `push_to_hub`: True |
|
- `hub_model_id`: bnkc123/bge-base-financial-matryoshka |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: epoch |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 16 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 4 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: cosine |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: True |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: True |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `tp_size`: 0 |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch_fused |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: True |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: bnkc123/bge-base-financial-matryoshka |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 | |
|
|:---------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:| |
|
| 0.8122 | 10 | 25.483 | - | - | - | - | - | |
|
| 1.0 | 13 | - | 0.7890 | 0.7887 | 0.7815 | 0.7647 | 0.7280 | |
|
| 1.5685 | 20 | 9.1323 | - | - | - | - | - | |
|
| 2.0 | 26 | - | 0.7952 | 0.7982 | 0.7933 | 0.7801 | 0.7477 | |
|
| 2.3249 | 30 | 6.7535 | - | - | - | - | - | |
|
| 3.0 | 39 | - | 0.8019 | 0.8048 | 0.7989 | 0.7865 | 0.7547 | |
|
| 3.0812 | 40 | 6.5646 | - | - | - | - | - | |
|
| **3.731** | **48** | **-** | **0.8008** | **0.8044** | **0.7984** | **0.7873** | **0.7546** | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
### Framework Versions |
|
- Python: 3.12.6 |
|
- Sentence Transformers: 4.1.0 |
|
- Transformers: 4.51.3 |
|
- PyTorch: 2.7.0+cu126 |
|
- Accelerate: 1.6.0 |
|
- Datasets: 3.5.1 |
|
- Tokenizers: 0.21.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |