datasetId
large_stringlengths
6
116
author
large_stringlengths
2
42
last_modified
large_stringdate
2021-04-29 15:34:29
2025-06-25 02:40:10
downloads
int64
0
3.97M
likes
int64
0
7.74k
tags
large listlengths
1
7.92k
task_categories
large listlengths
0
48
createdAt
large_stringdate
2022-03-02 23:29:22
2025-06-25 00:32:52
trending_score
float64
0
64
card
large_stringlengths
31
1.01M
gambitzpro/gambutz
gambitzpro
2025-04-01T10:49:15Z
61
0
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
[]
2025-04-01T10:49:15Z
0
--- license: bigscience-bloom-rail-1.0 ---
psg777/blacktape_filtered1
psg777
2025-06-17T15:09:33Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-06-17T15:09:13Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so101_follower", "total_episodes": 58, "total_frames": 39331, "total_tasks": 1, "total_videos": 116, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:58" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "shoulder_pan.pos", "shoulder_lift.pos", "elbow_flex.pos", "wrist_flex.pos", "wrist_roll.pos", "gripper.pos" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "shoulder_pan.pos", "shoulder_lift.pos", "elbow_flex.pos", "wrist_flex.pos", "wrist_roll.pos", "gripper.pos" ] }, "observation.images.birdseyeview": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.gripper": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
shaznin/task4_fix_generation_less
shaznin
2025-03-11T21:46:37Z
15
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-11T21:40:09Z
0
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 13854873 num_examples: 4889 - name: test num_bytes: 3496057 num_examples: 1223 download_size: 7778864 dataset_size: 17350930 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
MisterMango23/m18_Hellcat_tank_dataset
MisterMango23
2025-05-13T17:21:57Z
0
0
[ "license:artistic-2.0", "size_categories:n<1K", "format:text", "modality:image", "modality:text", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2025-05-13T17:21:32Z
0
--- license: artistic-2.0 ---
AI4Protein/DeepET_Topt
AI4Protein
2025-04-12T09:53:12Z
146
0
[ "task_categories:text-classification", "license:apache-2.0", "size_categories:1K<n<10K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2503.15438", "region:us", "protein", "downstream task" ]
[ "text-classification" ]
2025-01-30T09:08:58Z
0
--- license: apache-2.0 task_categories: - text-classification tags: - protein - downstream task --- # DeepET_Topt Dataset - Description: protein optimum temperature. - Number of labels: 1 - Problem Type: regression - Columns: - aa_seq: protein amino acid sequence # Github VenusFactory: A Unified Platform for Protein Engineering Data Retrieval and Language Model Fine-Tuning https://github.com/ai4protein/VenusFactory # Citation Please cite our work if you use our dataset. ``` @article{tan2025venusfactory, title={VenusFactory: A Unified Platform for Protein Engineering Data Retrieval and Language Model Fine-Tuning}, author={Tan, Yang and Liu, Chen and Gao, Jingyuan and Wu, Banghao and Li, Mingchen and Wang, Ruilin and Zhang, Lingrong and Yu, Huiqun and Fan, Guisheng and Hong, Liang and Zhou, Bingxin}, journal={arXiv preprint arXiv:2503.15438}, year={2025} } ```
charleyong/so100_y_cube
charleyong
2025-05-05T02:09:24Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "region:us", "LeRobot", "so100", "yc_demo" ]
[ "robotics" ]
2025-05-05T02:08:36Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - yc_demo configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 50, "total_frames": 29735, "total_tasks": 1, "total_videos": 50, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:50" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
DETAIM/parque-recreacional-datos
DETAIM
2025-01-31T21:10:22Z
37
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-31T21:10:16Z
0
--- dataset_info: features: - name: text dtype: string splits: - name: preguntas num_bytes: 6527 num_examples: 48 - name: tarifas num_bytes: 645 num_examples: 8 - name: contacto num_bytes: 326 num_examples: 4 - name: reservas num_bytes: 293 num_examples: 3 download_size: 8118 dataset_size: 7791 configs: - config_name: default data_files: - split: preguntas path: data/preguntas-* - split: tarifas path: data/tarifas-* - split: contacto path: data/contacto-* - split: reservas path: data/reservas-* ---
LogicNet-Subnet/Aristole
LogicNet-Subnet
2025-01-18T17:03:42Z
19
1
[ "task_categories:question-answering", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "question-answering" ]
2025-01-18T16:50:32Z
0
--- dataset_info: features: - name: Instruction dtype: string - name: Input dtype: string - name: Response dtype: string splits: - name: train num_bytes: 634349269 num_examples: 303496 download_size: 149717506 dataset_size: 634349269 configs: - config_name: default data_files: - split: train path: data/train-* license: apache-2.0 task_categories: - question-answering --- # Dataset Name This dataset contains instructions, inputs, and responses formatted for training language models. It is designed to help models understand and generate responses based on given instructions and inputs. ## Dataset Structure The dataset is structured with the following features: - **Instruction**: A string containing the task description or question. - **Input**: A string providing additional context or options. - **Response**: A string with the expected answer or completion.
abdulmannan-01/rag_combined_dataset_orca_and_openscholar_messages_format
abdulmannan-01
2025-01-09T14:02:12Z
17
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-09T14:00:10Z
0
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string - name: dataset_source dtype: string splits: - name: train num_bytes: 1396796323 num_examples: 180135 download_size: 663503269 dataset_size: 1396796323 configs: - config_name: default data_files: - split: train path: data/train-* ---
artao/x_dataset_158
artao
2024-12-03T01:01:55Z
16
0
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:question-answering", "task_categories:summarization", "task_categories:text-generation", "task_ids:sentiment-analysis", "task_ids:topic-classification", "task_ids:named-entity-recognition", "task_ids:language-modeling", "task_ids:text-scoring", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "task_ids:extractive-qa", "task_ids:news-articles-summarization", "multilinguality:multilingual", "source_datasets:original", "license:mit", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification", "token-classification", "question-answering", "summarization", "text-generation" ]
2024-12-03T01:01:52Z
0
--- license: mit multilinguality: - multilingual source_datasets: - original task_categories: - text-classification - token-classification - question-answering - summarization - text-generation task_ids: - sentiment-analysis - topic-classification - named-entity-recognition - language-modeling - text-scoring - multi-class-classification - multi-label-classification - extractive-qa - news-articles-summarization --- # Bittensor Subnet 13 X (Twitter) Dataset <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> ## Dataset Description - **Repository:** artao/x_dataset_158 - **Subnet:** Bittensor Subnet 13 - **Miner Hotkey:** 5G75HCGsuHpPdCfsKgPszqzMqV5cf2KyLmUcifb39g954AXk ### Dataset Summary This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks. For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe). ### Supported Tasks The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs. For example: - Sentiment Analysis - Trend Detection - Content Analysis - User Behavior Modeling ### Languages Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation. ## Dataset Structure ### Data Instances Each instance represents a single tweet with the following fields: ### Data Fields - `text` (string): The main content of the tweet. - `label` (string): Sentiment or topic category of the tweet. - `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present. - `datetime` (string): The date when the tweet was posted. - `username_encoded` (string): An encoded version of the username to maintain user privacy. - `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present. ### Data Splits This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp. ## Dataset Creation ### Source Data Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines. ### Personal and Sensitive Information All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information. ## Considerations for Using the Data ### Social Impact and Biases Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population. ### Limitations - Data quality may vary due to the decentralized nature of collection and preprocessing. - The dataset may contain noise, spam, or irrelevant content typical of social media platforms. - Temporal biases may exist due to real-time collection methods. - The dataset is limited to public tweets and does not include private accounts or direct messages. - Not all tweets contain hashtags or URLs. ## Additional Information ### Licensing Information The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use. ### Citation Information If you use this dataset in your research, please cite it as follows: ``` @misc{artao2024datauniversex_dataset_158, title={The Data Universe Datasets: The finest collection of social media data the web has to offer}, author={artao}, year={2024}, url={https://huggingface.co/datasets/artao/x_dataset_158}, } ``` ### Contributions To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms. ## Dataset Statistics [This section is automatically updated] - **Total Instances:** 5089 - **Date Range:** 2017-10-07T00:00:00Z to 2024-12-03T00:00:00Z - **Last Updated:** 2024-12-03T01:01:54Z ### Data Distribution - Tweets with hashtags: 9.61% - Tweets without hashtags: 90.39% ### Top 10 Hashtags For full statistics, please refer to the `stats.json` file in the repository. | Rank | Topic | Total Count | Percentage | |------|-------|-------------|-------------| | 1 | #bitcoin | 123 | 25.15% | | 2 | #btc | 79 | 16.16% | | 3 | #crypto | 20 | 4.09% | | 4 | #dogecoin | 16 | 3.27% | | 5 | #blockchain | 12 | 2.45% | | 6 | #thdtjsdn | 7 | 1.43% | | 7 | #xrp | 7 | 1.43% | | 8 | #entrepreneur | 4 | 0.82% | | 9 | #swisstronik | 4 | 0.82% | | 10 | #doge | 4 | 0.82% | ## Update History | Date | New Instances | Total Instances | |------|---------------|-----------------| | 2024-12-03T01:01:51Z | 4600 | 4600 | | 2024-12-03T01:01:54Z | 489 | 5089 |
paulrichmond/astro_gen0
paulrichmond
2024-11-20T14:55:27Z
16
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-20T08:07:28Z
0
--- dataset_info: features: - name: id dtype: string - name: abstract dtype: string - name: prompt dtype: string - name: y_true dtype: string - name: comp_Llama-2-7b-hf dtype: string - name: preds_Llama-2-7b-hf dtype: string - name: comp_Llama-3.1-8B dtype: string - name: preds_Llama-3.1-8B dtype: string - name: comp_astrollama_4bit dtype: string - name: preds_astrollama_4bit dtype: string splits: - name: test num_bytes: 829787 num_examples: 50 download_size: 475338 dataset_size: 829787 configs: - config_name: default data_files: - split: test path: data/test-* --- Generated with the following parameters - max_new_tokens: 1024 - min_new_tokens: 1 - temperature: 0.8 - do_sample: true
kothasuhas/qasper-eval
kothasuhas
2024-10-17T21:35:34Z
11
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-17T21:35:30Z
0
--- dataset_info: features: - name: id dtype: string - name: title dtype: string - name: abstract dtype: string - name: full_text sequence: - name: section_name dtype: string - name: paragraphs list: string - name: qas sequence: - name: question dtype: string - name: question_id dtype: string - name: nlp_background dtype: string - name: topic_background dtype: string - name: paper_read dtype: string - name: search_query dtype: string - name: question_writer dtype: string - name: answers sequence: - name: answer struct: - name: unanswerable dtype: bool - name: extractive_spans sequence: string - name: yes_no dtype: bool - name: free_form_answer dtype: string - name: evidence sequence: string - name: highlighted_evidence sequence: string - name: annotation_id dtype: string - name: worker_id dtype: string - name: figures_and_tables sequence: - name: caption dtype: string - name: file dtype: string - name: text dtype: string splits: - name: train num_bytes: 57730105.362776026 num_examples: 1000 download_size: 27937783 dataset_size: 57730105.362776026 configs: - config_name: default data_files: - split: train path: data/train-* ---
Charlie911/tmmluplus_CKIP_segmented
Charlie911
2024-10-13T20:48:14Z
1,435
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-11T18:59:36Z
0
--- dataset_info: - config_name: accounting features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 143040 num_examples: 191 - name: validation num_bytes: 13850 num_examples: 21 - name: train num_bytes: 4043 num_examples: 5 download_size: 102340 dataset_size: 160933 - config_name: administrative_law features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 166677 num_examples: 420 - name: validation num_bytes: 20304 num_examples: 47 - name: train num_bytes: 2664 num_examples: 5 download_size: 127869 dataset_size: 189645 - config_name: advance_chemistry features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 30931 num_examples: 123 - name: validation num_bytes: 3905 num_examples: 14 - name: train num_bytes: 1523 num_examples: 5 download_size: 39856 dataset_size: 36359 - config_name: agriculture features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 40368 num_examples: 151 - name: validation num_bytes: 5711 num_examples: 17 - name: train num_bytes: 1558 num_examples: 5 download_size: 46692 dataset_size: 47637 - config_name: anti_money_laundering features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 52448 num_examples: 134 - name: validation num_bytes: 5678 num_examples: 15 - name: train num_bytes: 2605 num_examples: 5 download_size: 54669 dataset_size: 60731 - config_name: auditing features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 267454 num_examples: 550 - name: validation num_bytes: 29600 num_examples: 61 - name: train num_bytes: 1820 num_examples: 5 download_size: 168630 dataset_size: 298874 - config_name: basic_medical_science features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 281510 num_examples: 954 - name: validation num_bytes: 29866 num_examples: 106 - name: train num_bytes: 1451 num_examples: 5 download_size: 219592 dataset_size: 312827 - config_name: business_management features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 37448 num_examples: 139 - name: validation num_bytes: 5218 num_examples: 16 - name: train num_bytes: 1098 num_examples: 5 download_size: 45758 dataset_size: 43764 - config_name: chinese_language_and_literature features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 135040 num_examples: 199 - name: validation num_bytes: 15790 num_examples: 22 - name: train num_bytes: 1960 num_examples: 5 download_size: 128450 dataset_size: 152790 - config_name: clinical_psychology features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 52728 num_examples: 125 - name: validation num_bytes: 5650 num_examples: 14 - name: train num_bytes: 1884 num_examples: 5 download_size: 56726 dataset_size: 60262 - config_name: computer_science features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 52940 num_examples: 174 - name: validation num_bytes: 5108 num_examples: 19 - name: train num_bytes: 1834 num_examples: 5 download_size: 54462 dataset_size: 59882 - config_name: culinary_skills features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 82263 num_examples: 292 - name: validation num_bytes: 10690 num_examples: 33 - name: train num_bytes: 1310 num_examples: 5 download_size: 80630 dataset_size: 94263 - config_name: dentistry features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 138558 num_examples: 399 - name: validation num_bytes: 16953 num_examples: 44 - name: train num_bytes: 1494 num_examples: 5 download_size: 120479 dataset_size: 157005 - config_name: economics features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 140568 num_examples: 393 - name: validation num_bytes: 14283 num_examples: 44 - name: train num_bytes: 1896 num_examples: 5 download_size: 104619 dataset_size: 156747 - config_name: education features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 42228 num_examples: 124 - name: validation num_bytes: 6290 num_examples: 14 - name: train num_bytes: 1659 num_examples: 5 download_size: 48847 dataset_size: 50177 - config_name: education_(profession_level) features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 194634 num_examples: 486 - name: validation num_bytes: 24269 num_examples: 54 - name: train num_bytes: 3278 num_examples: 5 download_size: 159782 dataset_size: 222181 - config_name: educational_psychology features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 67148 num_examples: 176 - name: validation num_bytes: 8339 num_examples: 20 - name: train num_bytes: 2251 num_examples: 5 download_size: 67025 dataset_size: 77738 - config_name: engineering_math features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 34125 num_examples: 103 - name: validation num_bytes: 4824 num_examples: 11 - name: train num_bytes: 1879 num_examples: 5 download_size: 40244 dataset_size: 40828 - config_name: finance_banking features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 54589 num_examples: 135 - name: validation num_bytes: 7056 num_examples: 15 - name: train num_bytes: 2098 num_examples: 5 download_size: 56632 dataset_size: 63743 - config_name: financial_analysis features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 109183 num_examples: 382 - name: validation num_bytes: 12539 num_examples: 42 - name: train num_bytes: 1261 num_examples: 5 download_size: 78306 dataset_size: 122983 - config_name: fire_science features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 32243 num_examples: 124 - name: validation num_bytes: 3650 num_examples: 14 - name: train num_bytes: 1543 num_examples: 5 download_size: 37588 dataset_size: 37436 - config_name: general_principles_of_law features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 46714 num_examples: 106 - name: validation num_bytes: 4537 num_examples: 12 - name: train num_bytes: 1646 num_examples: 5 download_size: 46577 dataset_size: 52897 - config_name: geography_of_taiwan features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 210561 num_examples: 768 - name: validation num_bytes: 21786 num_examples: 85 - name: train num_bytes: 1526 num_examples: 5 download_size: 164828 dataset_size: 233873 - config_name: human_behavior features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 124141 num_examples: 309 - name: validation num_bytes: 13616 num_examples: 34 - name: train num_bytes: 2044 num_examples: 5 download_size: 106900 dataset_size: 139801 - config_name: insurance_studies features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 331593 num_examples: 760 - name: validation num_bytes: 38208 num_examples: 85 - name: train num_bytes: 1879 num_examples: 5 download_size: 201610 dataset_size: 371680 - config_name: introduction_to_law features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 90751 num_examples: 237 - name: validation num_bytes: 10037 num_examples: 26 - name: train num_bytes: 4171 num_examples: 5 download_size: 84062 dataset_size: 104959 - config_name: jce_humanities features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 115000 num_examples: 90 - name: validation num_bytes: 15653 num_examples: 10 - name: train num_bytes: 7267 num_examples: 5 download_size: 104863 dataset_size: 137920 - config_name: junior_chemistry features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 49490 num_examples: 209 - name: validation num_bytes: 5858 num_examples: 23 - name: train num_bytes: 1367 num_examples: 5 download_size: 50749 dataset_size: 56715 - config_name: junior_chinese_exam features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 185937 num_examples: 175 - name: validation num_bytes: 21539 num_examples: 20 - name: train num_bytes: 8624 num_examples: 5 download_size: 178050 dataset_size: 216100 - config_name: junior_math_exam features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 46111 num_examples: 175 - name: validation num_bytes: 4830 num_examples: 19 - name: train num_bytes: 1397 num_examples: 5 download_size: 42644 dataset_size: 52338 - config_name: junior_science_exam features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 105465 num_examples: 213 - name: validation num_bytes: 10317 num_examples: 24 - name: train num_bytes: 2472 num_examples: 5 download_size: 91545 dataset_size: 118254 - config_name: junior_social_studies features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 94368 num_examples: 126 - name: validation num_bytes: 11772 num_examples: 14 - name: train num_bytes: 4339 num_examples: 5 download_size: 98766 dataset_size: 110479 - config_name: linear_algebra features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 15585 num_examples: 42 - name: validation num_bytes: 1343 num_examples: 5 - name: train num_bytes: 1854 num_examples: 5 download_size: 24724 dataset_size: 18782 - config_name: logic_reasoning features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 34227 num_examples: 139 - name: validation num_bytes: 4688 num_examples: 16 - name: train num_bytes: 1407 num_examples: 5 download_size: 35386 dataset_size: 40322 - config_name: macroeconomics features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 112483 num_examples: 411 - name: validation num_bytes: 12103 num_examples: 46 - name: train num_bytes: 1362 num_examples: 5 download_size: 86110 dataset_size: 125948 - config_name: management_accounting features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 100456 num_examples: 215 - name: validation num_bytes: 11119 num_examples: 24 - name: train num_bytes: 2060 num_examples: 5 download_size: 73174 dataset_size: 113635 - config_name: marketing_management features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 27688 num_examples: 93 - name: validation num_bytes: 2978 num_examples: 10 - name: train num_bytes: 1580 num_examples: 5 download_size: 36166 dataset_size: 32246 - config_name: mechanical features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 25281 num_examples: 118 - name: validation num_bytes: 2838 num_examples: 13 - name: train num_bytes: 745 num_examples: 5 download_size: 33533 dataset_size: 28864 - config_name: music features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 81863 num_examples: 278 - name: validation num_bytes: 7865 num_examples: 31 - name: train num_bytes: 1425 num_examples: 5 download_size: 76495 dataset_size: 91153 - config_name: national_protection features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 45554 num_examples: 211 - name: validation num_bytes: 5467 num_examples: 24 - name: train num_bytes: 957 num_examples: 5 download_size: 48171 dataset_size: 51978 - config_name: nautical_science features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 140168 num_examples: 551 - name: validation num_bytes: 15832 num_examples: 61 - name: train num_bytes: 841 num_examples: 5 download_size: 112779 dataset_size: 156841 - config_name: occupational_therapy_for_psychological_disorders features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 232474 num_examples: 543 - name: validation num_bytes: 23737 num_examples: 60 - name: train num_bytes: 1839 num_examples: 5 download_size: 337115 dataset_size: 258050 - config_name: official_document_management features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 52950 num_examples: 222 - name: validation num_bytes: 5174 num_examples: 25 - name: train num_bytes: 1469 num_examples: 5 download_size: 48239 dataset_size: 59593 - config_name: optometry features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 344118 num_examples: 920 - name: validation num_bytes: 39905 num_examples: 102 - name: train num_bytes: 1648 num_examples: 5 download_size: 229374 dataset_size: 385671 - config_name: organic_chemistry features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 26090 num_examples: 109 - name: validation num_bytes: 2739 num_examples: 12 - name: train num_bytes: 1141 num_examples: 5 download_size: 35418 dataset_size: 29970 - config_name: pharmacology features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 130347 num_examples: 577 - name: validation num_bytes: 14847 num_examples: 64 - name: train num_bytes: 709 num_examples: 5 download_size: 105656 dataset_size: 145903 - config_name: pharmacy features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 107534 num_examples: 391 - name: validation num_bytes: 13147 num_examples: 44 - name: train num_bytes: 1162 num_examples: 5 download_size: 88119 dataset_size: 121843 - config_name: physical_education features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 39726 num_examples: 179 - name: validation num_bytes: 4635 num_examples: 20 - name: train num_bytes: 980 num_examples: 5 download_size: 43601 dataset_size: 45341 - config_name: physics features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 30285 num_examples: 97 - name: validation num_bytes: 3109 num_examples: 11 - name: train num_bytes: 1123 num_examples: 5 download_size: 35044 dataset_size: 34517 - config_name: politic_science features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 242147 num_examples: 995 - name: validation num_bytes: 28166 num_examples: 111 - name: train num_bytes: 1271 num_examples: 5 download_size: 176571 dataset_size: 271584 - config_name: real_estate features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 36568 num_examples: 92 - name: validation num_bytes: 3779 num_examples: 10 - name: train num_bytes: 2595 num_examples: 5 download_size: 42406 dataset_size: 42942 - config_name: secondary_physics features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 45889 num_examples: 112 - name: validation num_bytes: 5903 num_examples: 13 - name: train num_bytes: 1630 num_examples: 5 download_size: 49062 dataset_size: 53422 - config_name: statistics_and_machine_learning features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 74744 num_examples: 224 - name: validation num_bytes: 8680 num_examples: 25 - name: train num_bytes: 2292 num_examples: 5 download_size: 74012 dataset_size: 85716 - config_name: taiwanese_hokkien features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 37305 num_examples: 129 - name: validation num_bytes: 2371 num_examples: 14 - name: train num_bytes: 2236 num_examples: 5 download_size: 44953 dataset_size: 41912 - config_name: taxation features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 158992 num_examples: 375 - name: validation num_bytes: 19343 num_examples: 42 - name: train num_bytes: 1992 num_examples: 5 download_size: 116039 dataset_size: 180327 - config_name: technical features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 68955 num_examples: 402 - name: validation num_bytes: 8824 num_examples: 45 - name: train num_bytes: 759 num_examples: 5 download_size: 68667 dataset_size: 78538 - config_name: three_principles_of_people features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 24551 num_examples: 139 - name: validation num_bytes: 2708 num_examples: 16 - name: train num_bytes: 943 num_examples: 5 download_size: 30560 dataset_size: 28202 - config_name: trade features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 165194 num_examples: 502 - name: validation num_bytes: 18257 num_examples: 56 - name: train num_bytes: 1520 num_examples: 5 download_size: 115008 dataset_size: 184971 - config_name: traditional_chinese_medicine_clinical_medicine features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 95060 num_examples: 278 - name: validation num_bytes: 9934 num_examples: 31 - name: train num_bytes: 1546 num_examples: 5 download_size: 87490 dataset_size: 106540 - config_name: trust_practice features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 151302 num_examples: 401 - name: validation num_bytes: 17361 num_examples: 45 - name: train num_bytes: 2636 num_examples: 5 download_size: 110992 dataset_size: 171299 - config_name: ttqav2 features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 39149 num_examples: 113 - name: validation num_bytes: 3163 num_examples: 13 - name: train num_bytes: 2235 num_examples: 5 download_size: 43817 dataset_size: 44547 - config_name: tve_chinese_language features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 613018 num_examples: 483 - name: validation num_bytes: 69563 num_examples: 54 - name: train num_bytes: 6192 num_examples: 5 download_size: 485161 dataset_size: 688773 - config_name: tve_design features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 165982 num_examples: 480 - name: validation num_bytes: 18318 num_examples: 53 - name: train num_bytes: 2207 num_examples: 5 download_size: 137067 dataset_size: 186507 - config_name: tve_mathematics features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 40585 num_examples: 150 - name: validation num_bytes: 4025 num_examples: 17 - name: train num_bytes: 1225 num_examples: 5 download_size: 39996 dataset_size: 45835 - config_name: tve_natural_sciences features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 127145 num_examples: 424 - name: validation num_bytes: 15929 num_examples: 47 - name: train num_bytes: 2122 num_examples: 5 download_size: 114330 dataset_size: 145196 - config_name: veterinary_pathology features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 72833 num_examples: 283 - name: validation num_bytes: 8634 num_examples: 32 - name: train num_bytes: 1511 num_examples: 5 download_size: 66314 dataset_size: 82978 - config_name: veterinary_pharmacology features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: test num_bytes: 109812 num_examples: 540 - name: validation num_bytes: 11697 num_examples: 60 - name: train num_bytes: 1054 num_examples: 5 download_size: 89864 dataset_size: 122563 configs: - config_name: accounting data_files: - split: test path: accounting/test-* - split: validation path: accounting/validation-* - split: train path: accounting/train-* - config_name: administrative_law data_files: - split: test path: administrative_law/test-* - split: validation path: administrative_law/validation-* - split: train path: administrative_law/train-* - config_name: advance_chemistry data_files: - split: test path: advance_chemistry/test-* - split: validation path: advance_chemistry/validation-* - split: train path: advance_chemistry/train-* - config_name: agriculture data_files: - split: test path: agriculture/test-* - split: validation path: agriculture/validation-* - split: train path: agriculture/train-* - config_name: anti_money_laundering data_files: - split: test path: anti_money_laundering/test-* - split: validation path: anti_money_laundering/validation-* - split: train path: anti_money_laundering/train-* - config_name: auditing data_files: - split: test path: auditing/test-* - split: validation path: auditing/validation-* - split: train path: auditing/train-* - config_name: basic_medical_science data_files: - split: test path: basic_medical_science/test-* - split: validation path: basic_medical_science/validation-* - split: train path: basic_medical_science/train-* - config_name: business_management data_files: - split: test path: business_management/test-* - split: validation path: business_management/validation-* - split: train path: business_management/train-* - config_name: chinese_language_and_literature data_files: - split: test path: chinese_language_and_literature/test-* - split: validation path: chinese_language_and_literature/validation-* - split: train path: chinese_language_and_literature/train-* - config_name: clinical_psychology data_files: - split: test path: clinical_psychology/test-* - split: validation path: clinical_psychology/validation-* - split: train path: clinical_psychology/train-* - config_name: computer_science data_files: - split: test path: computer_science/test-* - split: validation path: computer_science/validation-* - split: train path: computer_science/train-* - config_name: culinary_skills data_files: - split: test path: culinary_skills/test-* - split: validation path: culinary_skills/validation-* - split: train path: culinary_skills/train-* - config_name: dentistry data_files: - split: test path: dentistry/test-* - split: validation path: dentistry/validation-* - split: train path: dentistry/train-* - config_name: economics data_files: - split: test path: economics/test-* - split: validation path: economics/validation-* - split: train path: economics/train-* - config_name: education data_files: - split: test path: education/test-* - split: validation path: education/validation-* - split: train path: education/train-* - config_name: education_(profession_level) data_files: - split: test path: education_(profession_level)/test-* - split: validation path: education_(profession_level)/validation-* - split: train path: education_(profession_level)/train-* - config_name: educational_psychology data_files: - split: test path: educational_psychology/test-* - split: validation path: educational_psychology/validation-* - split: train path: educational_psychology/train-* - config_name: engineering_math data_files: - split: test path: engineering_math/test-* - split: validation path: engineering_math/validation-* - split: train path: engineering_math/train-* - config_name: finance_banking data_files: - split: test path: finance_banking/test-* - split: validation path: finance_banking/validation-* - split: train path: finance_banking/train-* - config_name: financial_analysis data_files: - split: test path: financial_analysis/test-* - split: validation path: financial_analysis/validation-* - split: train path: financial_analysis/train-* - config_name: fire_science data_files: - split: test path: fire_science/test-* - split: validation path: fire_science/validation-* - split: train path: fire_science/train-* - config_name: general_principles_of_law data_files: - split: test path: general_principles_of_law/test-* - split: validation path: general_principles_of_law/validation-* - split: train path: general_principles_of_law/train-* - config_name: geography_of_taiwan data_files: - split: test path: geography_of_taiwan/test-* - split: validation path: geography_of_taiwan/validation-* - split: train path: geography_of_taiwan/train-* - config_name: human_behavior data_files: - split: test path: human_behavior/test-* - split: validation path: human_behavior/validation-* - split: train path: human_behavior/train-* - config_name: insurance_studies data_files: - split: test path: insurance_studies/test-* - split: validation path: insurance_studies/validation-* - split: train path: insurance_studies/train-* - config_name: introduction_to_law data_files: - split: test path: introduction_to_law/test-* - split: validation path: introduction_to_law/validation-* - split: train path: introduction_to_law/train-* - config_name: jce_humanities data_files: - split: test path: jce_humanities/test-* - split: validation path: jce_humanities/validation-* - split: train path: jce_humanities/train-* - config_name: junior_chemistry data_files: - split: test path: junior_chemistry/test-* - split: validation path: junior_chemistry/validation-* - split: train path: junior_chemistry/train-* - config_name: junior_chinese_exam data_files: - split: test path: junior_chinese_exam/test-* - split: validation path: junior_chinese_exam/validation-* - split: train path: junior_chinese_exam/train-* - config_name: junior_math_exam data_files: - split: test path: junior_math_exam/test-* - split: validation path: junior_math_exam/validation-* - split: train path: junior_math_exam/train-* - config_name: junior_science_exam data_files: - split: test path: junior_science_exam/test-* - split: validation path: junior_science_exam/validation-* - split: train path: junior_science_exam/train-* - config_name: junior_social_studies data_files: - split: test path: junior_social_studies/test-* - split: validation path: junior_social_studies/validation-* - split: train path: junior_social_studies/train-* - config_name: linear_algebra data_files: - split: test path: linear_algebra/test-* - split: validation path: linear_algebra/validation-* - split: train path: linear_algebra/train-* - config_name: logic_reasoning data_files: - split: test path: logic_reasoning/test-* - split: validation path: logic_reasoning/validation-* - split: train path: logic_reasoning/train-* - config_name: macroeconomics data_files: - split: test path: macroeconomics/test-* - split: validation path: macroeconomics/validation-* - split: train path: macroeconomics/train-* - config_name: management_accounting data_files: - split: test path: management_accounting/test-* - split: validation path: management_accounting/validation-* - split: train path: management_accounting/train-* - config_name: marketing_management data_files: - split: test path: marketing_management/test-* - split: validation path: marketing_management/validation-* - split: train path: marketing_management/train-* - config_name: mechanical data_files: - split: test path: mechanical/test-* - split: validation path: mechanical/validation-* - split: train path: mechanical/train-* - config_name: music data_files: - split: test path: music/test-* - split: validation path: music/validation-* - split: train path: music/train-* - config_name: national_protection data_files: - split: test path: national_protection/test-* - split: validation path: national_protection/validation-* - split: train path: national_protection/train-* - config_name: nautical_science data_files: - split: test path: nautical_science/test-* - split: validation path: nautical_science/validation-* - split: train path: nautical_science/train-* - config_name: occupational_therapy_for_psychological_disorders data_files: - split: test path: occupational_therapy_for_psychological_disorders/test-* - split: validation path: occupational_therapy_for_psychological_disorders/validation-* - split: train path: occupational_therapy_for_psychological_disorders/train-* - config_name: official_document_management data_files: - split: test path: official_document_management/test-* - split: validation path: official_document_management/validation-* - split: train path: official_document_management/train-* - config_name: optometry data_files: - split: test path: optometry/test-* - split: validation path: optometry/validation-* - split: train path: optometry/train-* - config_name: organic_chemistry data_files: - split: test path: organic_chemistry/test-* - split: validation path: organic_chemistry/validation-* - split: train path: organic_chemistry/train-* - config_name: pharmacology data_files: - split: test path: pharmacology/test-* - split: validation path: pharmacology/validation-* - split: train path: pharmacology/train-* - config_name: pharmacy data_files: - split: test path: pharmacy/test-* - split: validation path: pharmacy/validation-* - split: train path: pharmacy/train-* - config_name: physical_education data_files: - split: test path: physical_education/test-* - split: validation path: physical_education/validation-* - split: train path: physical_education/train-* - config_name: physics data_files: - split: test path: physics/test-* - split: validation path: physics/validation-* - split: train path: physics/train-* - config_name: politic_science data_files: - split: test path: politic_science/test-* - split: validation path: politic_science/validation-* - split: train path: politic_science/train-* - config_name: real_estate data_files: - split: test path: real_estate/test-* - split: validation path: real_estate/validation-* - split: train path: real_estate/train-* - config_name: secondary_physics data_files: - split: test path: secondary_physics/test-* - split: validation path: secondary_physics/validation-* - split: train path: secondary_physics/train-* - config_name: statistics_and_machine_learning data_files: - split: test path: statistics_and_machine_learning/test-* - split: validation path: statistics_and_machine_learning/validation-* - split: train path: statistics_and_machine_learning/train-* - config_name: taiwanese_hokkien data_files: - split: test path: taiwanese_hokkien/test-* - split: validation path: taiwanese_hokkien/validation-* - split: train path: taiwanese_hokkien/train-* - config_name: taxation data_files: - split: test path: taxation/test-* - split: validation path: taxation/validation-* - split: train path: taxation/train-* - config_name: technical data_files: - split: test path: technical/test-* - split: validation path: technical/validation-* - split: train path: technical/train-* - config_name: three_principles_of_people data_files: - split: test path: three_principles_of_people/test-* - split: validation path: three_principles_of_people/validation-* - split: train path: three_principles_of_people/train-* - config_name: trade data_files: - split: test path: trade/test-* - split: validation path: trade/validation-* - split: train path: trade/train-* - config_name: traditional_chinese_medicine_clinical_medicine data_files: - split: test path: traditional_chinese_medicine_clinical_medicine/test-* - split: validation path: traditional_chinese_medicine_clinical_medicine/validation-* - split: train path: traditional_chinese_medicine_clinical_medicine/train-* - config_name: trust_practice data_files: - split: test path: trust_practice/test-* - split: validation path: trust_practice/validation-* - split: train path: trust_practice/train-* - config_name: ttqav2 data_files: - split: test path: ttqav2/test-* - split: validation path: ttqav2/validation-* - split: train path: ttqav2/train-* - config_name: tve_chinese_language data_files: - split: test path: tve_chinese_language/test-* - split: validation path: tve_chinese_language/validation-* - split: train path: tve_chinese_language/train-* - config_name: tve_design data_files: - split: test path: tve_design/test-* - split: validation path: tve_design/validation-* - split: train path: tve_design/train-* - config_name: tve_mathematics data_files: - split: test path: tve_mathematics/test-* - split: validation path: tve_mathematics/validation-* - split: train path: tve_mathematics/train-* - config_name: tve_natural_sciences data_files: - split: test path: tve_natural_sciences/test-* - split: validation path: tve_natural_sciences/validation-* - split: train path: tve_natural_sciences/train-* - config_name: veterinary_pathology data_files: - split: test path: veterinary_pathology/test-* - split: validation path: veterinary_pathology/validation-* - split: train path: veterinary_pathology/train-* - config_name: veterinary_pharmacology data_files: - split: test path: veterinary_pharmacology/test-* - split: validation path: veterinary_pharmacology/validation-* - split: train path: veterinary_pharmacology/train-* ---
sagar27kumar/ECG-XRAY-dataset
sagar27kumar
2025-01-25T00:40:01Z
72
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-25T00:29:38Z
0
--- dataset_info: features: - name: image dtype: string - name: label dtype: int64 - name: pixel_values sequence: sequence: sequence: float32 splits: - name: train num_bytes: 1646447245 num_examples: 928 - name: test num_bytes: 794835448 num_examples: 448 - name: validation num_bytes: 837423369 num_examples: 472 download_size: 647076823 dataset_size: 3278706062 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: validation path: data/validation-* ---
Yuyeong/rw_cora_nbw_50_cycle
Yuyeong
2025-04-22T01:25:43Z
16
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-22T01:22:25Z
0
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': '0' '1': '1' '2': '2' '3': '3' '4': '4' '5': '5' '6': '6' - name: group_idx dtype: int64 - name: node_idx dtype: int64 splits: - name: train_seed0 num_bytes: 184339764.0 num_examples: 239600 - name: validation_seed0 num_bytes: 230040.02268781303 num_examples: 299 - name: test_seed0 num_bytes: 230809.38731218697 num_examples: 300 - name: train_seed1 num_bytes: 184339764.0 num_examples: 239600 - name: validation_seed1 num_bytes: 230040.02268781303 num_examples: 299 - name: test_seed1 num_bytes: 230809.38731218697 num_examples: 300 - name: train_seed2 num_bytes: 184339764.0 num_examples: 239600 - name: validation_seed2 num_bytes: 230040.02268781303 num_examples: 299 - name: test_seed2 num_bytes: 230809.38731218697 num_examples: 300 - name: train_seed3 num_bytes: 184339764.0 num_examples: 239600 - name: validation_seed3 num_bytes: 230040.02268781303 num_examples: 299 - name: test_seed3 num_bytes: 230809.38731218697 num_examples: 300 - name: train_seed4 num_bytes: 184339764.0 num_examples: 239600 - name: validation_seed4 num_bytes: 230040.02268781303 num_examples: 299 - name: test_seed4 num_bytes: 230809.38731218697 num_examples: 300 - name: train_seed5 num_bytes: 184339764.0 num_examples: 239600 - name: validation_seed5 num_bytes: 230040.02268781303 num_examples: 299 - name: test_seed5 num_bytes: 230809.38731218697 num_examples: 300 - name: train_seed6 num_bytes: 184339764.0 num_examples: 239600 - name: validation_seed6 num_bytes: 230040.02268781303 num_examples: 299 - name: test_seed6 num_bytes: 230809.38731218697 num_examples: 300 - name: train_seed7 num_bytes: 184339764.0 num_examples: 239600 - name: validation_seed7 num_bytes: 230040.02268781303 num_examples: 299 - name: test_seed7 num_bytes: 230809.38731218697 num_examples: 300 - name: train_seed8 num_bytes: 184339764.0 num_examples: 239600 - name: validation_seed8 num_bytes: 230040.02268781303 num_examples: 299 - name: test_seed8 num_bytes: 230809.38731218697 num_examples: 300 - name: train_seed9 num_bytes: 184339764.0 num_examples: 239600 - name: validation_seed9 num_bytes: 230040.02268781303 num_examples: 299 - name: test_seed9 num_bytes: 230809.38731218697 num_examples: 300 download_size: 979163390 dataset_size: 1848006134.1000001 configs: - config_name: default data_files: - split: train_seed0 path: data/train_seed0-* - split: validation_seed0 path: data/validation_seed0-* - split: test_seed0 path: data/test_seed0-* - split: train_seed1 path: data/train_seed1-* - split: validation_seed1 path: data/validation_seed1-* - split: test_seed1 path: data/test_seed1-* - split: train_seed2 path: data/train_seed2-* - split: validation_seed2 path: data/validation_seed2-* - split: test_seed2 path: data/test_seed2-* - split: train_seed3 path: data/train_seed3-* - split: validation_seed3 path: data/validation_seed3-* - split: test_seed3 path: data/test_seed3-* - split: train_seed4 path: data/train_seed4-* - split: validation_seed4 path: data/validation_seed4-* - split: test_seed4 path: data/test_seed4-* - split: train_seed5 path: data/train_seed5-* - split: validation_seed5 path: data/validation_seed5-* - split: test_seed5 path: data/test_seed5-* - split: train_seed6 path: data/train_seed6-* - split: validation_seed6 path: data/validation_seed6-* - split: test_seed6 path: data/test_seed6-* - split: train_seed7 path: data/train_seed7-* - split: validation_seed7 path: data/validation_seed7-* - split: test_seed7 path: data/test_seed7-* - split: train_seed8 path: data/train_seed8-* - split: validation_seed8 path: data/validation_seed8-* - split: test_seed8 path: data/test_seed8-* - split: train_seed9 path: data/train_seed9-* - split: validation_seed9 path: data/validation_seed9-* - split: test_seed9 path: data/test_seed9-* ---
qfq/eidata_newscript_dev20241102_221115_iter2_5
qfq
2024-11-02T23:18:57Z
16
0
[ "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-02T23:18:56Z
0
--- dataset_info: features: - name: orig_problem dtype: string - name: orig_solution dtype: string - name: orig_answer dtype: string - name: thinking_trajectory sequence: string - name: golden_thinking_trajectory sequence: string - name: old_trajectory dtype: 'null' - name: labeled_trajectory dtype: 'null' splits: - name: train num_bytes: 0.0 num_examples: 0 download_size: 2364 dataset_size: 0.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
alea-institute/kl3m-filter-data-dotgov-www.acf.hhs.gov
alea-institute
2025-02-03T21:20:35Z
16
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-03T21:20:27Z
0
--- dataset_info: features: - name: identifier dtype: string - name: dataset dtype: string - name: mime_type dtype: string - name: score dtype: float64 - name: tokens sequence: int64 splits: - name: train num_bytes: 182920620 num_examples: 2405 download_size: 33259403 dataset_size: 182920620 configs: - config_name: default data_files: - split: train path: data/train-* ---
ziyu3141/rf_newtrain_7_38
ziyu3141
2025-02-07T10:51:15Z
13
0
[ "size_categories:n<1K", "modality:tabular", "modality:text", "region:us" ]
[]
2025-02-07T10:51:11Z
0
--- dataset_info: features: - name: Filename dtype: string - name: Aesthetics score dtype: float64 - name: Artifact score dtype: float64 - name: Misalignment score dtype: float64 - name: Overall score dtype: float64 - name: Artifact heatmap sequence: sequence: sequence: int64 - name: Misalignment heatmap sequence: sequence: sequence: int64 - name: Misalignment token label dtype: string - name: is_uneven dtype: bool - name: preferred_image dtype: binary - name: unpreferred_image dtype: binary - name: revised_image dtype: binary - name: revised_id dtype: string - name: unrevised_id dtype: string - name: is_preferred dtype: bool splits: - name: train num_bytes: 675743779 num_examples: 100 download_size: 43836364 dataset_size: 675743779 configs: - config_name: default data_files: - split: train path: data/train-* ---
Archistrax/answers
Archistrax
2025-05-11T14:36:51Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-11T14:36:49Z
0
--- dataset_info: features: - name: abstraction dtype: string - name: social dtype: string - name: disrupted dtype: string - name: composition dtype: string - name: object dtype: string splits: - name: train num_bytes: 285 num_examples: 3 download_size: 2492 dataset_size: 285 configs: - config_name: default data_files: - split: train path: data/train-* ---
colabfit/mlearn_Mo_train
colabfit
2025-04-23T18:14:17Z
20
0
[ "license:bsd-3-clause", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "molecular dynamics", "mlip", "interatomic potential" ]
[]
2025-04-01T20:39:46Z
0
--- configs: - config_name: default data_files: "main/*.parquet" license: bsd-3-clause tags: - molecular dynamics - mlip - interatomic potential pretty_name: mlearn Mo train --- # Dataset mlearn Mo train ### Description A comprehensive DFT data set was generated for six elements - Li, Mo, Ni, Cu, Si, and Ge. These elements were chosen to span a variety of chemistries (main group metal, transition metal, and semiconductor), crystal structures (bcc, fcc, and diamond) and bonding types (metallic and covalent). This dataset comprises only the Mo configurations <br>Additional details stored in dataset columns prepended with "dataset_". ### Dataset authors Yunxing Zuo, Chi Chen, Xiangguo Li, Zhi Deng, Yiming Chen, Jörg Behler, Gábor Csányi, Alexander V. Shapeev, Aidan P. Thompson, Mitchell A. Wood, Shyue Ping Ong ### Publication https://doi.org/10.1021/acs.jpca.9b08723 ### Original data link https://github.com/materialsvirtuallab/mlearn/tree/master/data ### License BSD-3-Clause ### Number of unique molecular configurations 194 ### Number of atoms 10087 ### Elements included Mo ### Properties included energy, atomic forces, cauchy stress ### Cite this dataset Zuo, Y., Chen, C., Li, X., Deng, Z., Chen, Y., Behler, J., Csányi, G., Shapeev, A. V., Thompson, A. P., Wood, M. A., and Ong, S. P. _mlearn Mo train_. ColabFit, 2023. https://doi.org/10.60732/3827e5e1
EuskadIA/Erregistro_Zibila_Hiztegia
EuskadIA
2025-03-29T22:09:08Z
17
0
[ "task_categories:translation", "language:eu", "language:spa", "language:fra", "language:eng", "region:us" ]
[ "translation" ]
2025-01-14T17:52:42Z
0
--- language: - eu - spa - fra - eng task_categories: - translation --- > [!NOTE] > Dataset origin: https://www.ivap.euskadi.eus/webivap00-a5app3/fr/ac36aEuskaltermWar/publiko/erakutsiBankuEdukia
TAUR-dev/qwen2.5_1.5B__2d_retries_eval_fixed__working__first_response_correct__training
TAUR-dev
2025-05-28T00:31:06Z
0
0
[ "region:us" ]
[]
2025-05-28T00:31:04Z
0
--- dataset_info: features: - name: conversations list: - name: from dtype: string - name: value dtype: string splits: - name: train num_bytes: 1570086.0 num_examples: 1865 download_size: 546207 dataset_size: 1570086.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
haorandai/New_Mammal_1Samples_epsilon_0.1_alpha_0.005_With1Constraints
haorandai
2024-10-03T02:56:08Z
19
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-03T02:15:13Z
0
--- dataset_info: features: - name: image dtype: image - name: text dtype: string splits: - name: train num_bytes: 28673.0 num_examples: 2 download_size: 30239 dataset_size: 28673.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
anthonyj/numina-deepseek-r1-qwen-7b
anthonyj
2025-01-28T23:36:18Z
53
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "library:distilabel", "region:us", "synthetic", "distilabel", "rlaif" ]
[]
2025-01-28T23:36:13Z
0
--- size_categories: n<1K dataset_info: features: - name: problem dtype: string - name: solution dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string - name: generation dtype: string - name: distilabel_metadata struct: - name: raw_input_text_generation_0 list: - name: content dtype: string - name: role dtype: string - name: raw_output_text_generation_0 dtype: string - name: statistics_text_generation_0 struct: - name: input_tokens dtype: int64 - name: output_tokens dtype: int64 - name: model_name dtype: string splits: - name: train num_bytes: 796104 num_examples: 40 download_size: 262284 dataset_size: 796104 configs: - config_name: default data_files: - split: train path: data/train-* tags: - synthetic - distilabel - rlaif --- <p align="left"> <a href="https://github.com/argilla-io/distilabel"> <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/> </a> </p> # Dataset Card for numina-deepseek-r1-qwen-7b This dataset has been created with [distilabel](https://distilabel.argilla.io/). ## Dataset Summary This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI: ```console distilabel pipeline run --config "https://huggingface.co/datasets/anthonyj/numina-deepseek-r1-qwen-7b/raw/main/pipeline.yaml" ``` or explore the configuration: ```console distilabel pipeline info --config "https://huggingface.co/datasets/anthonyj/numina-deepseek-r1-qwen-7b/raw/main/pipeline.yaml" ``` ## Dataset structure The examples have the following structure per configuration: <details><summary> Configuration: default </summary><hr> ```json { "distilabel_metadata": { "raw_input_text_generation_0": [ { "content": "You will be given a problem. Please reason step by step, and put your final answer within \boxed{}:\nWhat is the coefficient of $x^2y^6$ in the expansion of $\\left(\\frac{3}{5}x-\\frac{y}{2}\\right)^8$? Express your answer as a common fraction.", "role": "user" } ], "raw_output_text_generation_0": "\u003cthink\u003e\nOkay, let me try to figure out the coefficient of \\(x^2 y^6\\) in the expansion of \\(\\left(\\frac{3}{5}x - \\frac{y}{2}\\right)^8\\). Hmm, I remember that when expanding a binomial like \\((a + b)^n\\), we can use the binomial theorem. The binomial theorem states that each term in the expansion is of the form \\(\\binom{n}{k} a^{n - k} b^{k}\\), where \\(k\\) ranges from 0 to \\(n\\).\n\nSo, in this problem, our binomial is \\(\\left(\\frac{3}{5}x - \\frac{y}{2}\\right)\\), and we\u0027re raising it to the 8th power. Let me denote \\(a = \\frac{3}{5}x\\) and \\(b = -\\frac{y}{2}\\). Then, the expansion will have terms of the form \\(\\binom{8}{k} \\left(\\frac{3}{5}x\\right)^{8 - k} \\left(-\\frac{y}{2}\\right)^k\\).\n\nWe need the term where the power of \\(x\\) is 2 and the power of \\(y\\) is 6. Since \\(x\\) is raised to the power of \\(8 - k\\) and \\(y\\) is raised to the power of \\(k\\), we can set up the equation \\(8 - k = 2\\). Solving for \\(k\\), we get \\(k = 6\\). So, the term we\u0027re interested in corresponds to \\(k = 6\\).\n\nNow, let\u0027s compute the coefficient for \\(k = 6\\). The binomial coefficient is \\(\\binom{8}{6}\\). I recall that \\(\\binom{n}{k} = \\binom{n}{n - k}\\), so \\(\\binom{8}{6} = \\binom{8}{2}\\). Calculating \\(\\binom{8}{2}\\), which is \\(\\frac{8 \\times 7}{2 \\times 1} = 28\\).\n\nNext, we need to compute \\(\\left(\\frac{3}{5}\\right)^{8 - 6} = \\left(\\frac{3}{5}\\right)^2\\). Let me calculate that: \\(\\left(\\frac{3}{5}\\right)^2 = \\frac{9}{25}\\).\n\nThen, we have \\(\\left(-\\frac{1}{2}\\right)^6\\). Hmm, raising a negative number to an even power gives a positive result. So, \\(\\left(-\\frac{1}{2}\\right)^6 = \\left(\\frac{1}{2}\\right)^6 = \\frac{1}{64}\\).\n\nNow, multiplying all these together: the coefficient is \\(\\binom{8}{6} \\times \\left(\\frac{3}{5}\\right)^2 \\times \\left(-\\frac{1}{2}\\right)^6 = 28 \\times \\frac{9}{25} \\times \\frac{1}{64}\\).\n\nLet me compute this step by step. First, multiply 28 and \\(\\frac{9}{25}\\). So, \\(28 \\times \\frac{9}{25}\\). Let\u0027s see, 28 divided by 25 is \\(\\frac{28}{25}\\), and then multiplied by 9 gives \\(\\frac{252}{25}\\). \n\nThen, we multiply this result by \\(\\frac{1}{64}\\): \\(\\frac{252}{25} \\times \\frac{1}{64}\\). Multiplying the numerators: 252 \u00d7 1 = 252, and denominators: 25 \u00d7 64 = 1600. So, the coefficient is \\(\\frac{252}{1600}\\).\n\nWait, can we simplify this fraction? Let\u0027s see. Both 252 and 1600 are divisible by 4. Dividing numerator and denominator by 4: 252 \u00f7 4 = 63, and 1600 \u00f7 4 = 400. So, now we have \\(\\frac{63}{400}\\). \n\nIs 63 and 400 divisible by any common number? Well, 63 is 7 \u00d7 9, and 400 is 16 \u00d7 25. They don\u0027t share any common factors besides 1, so \\(\\frac{63}{400}\\) is the simplified fraction.\n\nBut hold on, let me double-check my calculations to make sure I didn\u0027t make a mistake. So, binomial coefficient was 28, which is correct because \\(\\binom{8}{6}\\) is 28. Then, \\(\\left(\\frac{3}{5}\\right)^2 is indeed 9/25, and \\(\\left(-\\frac{1}{2}\\right)^6 is 1/64. Multiplying 28, 9/25, and 1/64:\n\n28 \u00d7 9 = 252, and 25 \u00d7 64 = 1600. So that\u0027s 252/1600. Then simplifying, dividing numerator and denominator by 4 gives 63/400. That seems correct.\n\nBut wait, I just realized that the term is \\(\\left(-\\frac{y}{2}\\right)^6\\), which is positive because 6 is even, so that\u0027s correct. So, the coefficient is positive 63/400. Hmm, that seems right.\n\nLet me think if there\u0027s another way to approach this. Maybe using the multinomial theorem? But no, in this case, since it\u0027s a binomial, the binomial theorem should suffice. Yeah, I think my approach is correct.\n\nAlternatively, I can think about the term in the expansion. The general term is:\n\n\\[\n\\binom{8}{k} \\left(\\frac{3}{5}x\\right)^{8 - k} \\left(-\\frac{y}{2}\\right)^k\n\\]\n\nWe found that when \\(k = 6\\), the term is:\n\n\\[\n\\binom{8}{6} \\left(\\frac{3}{5}\\right)^{2} \\left(-\\frac{1}{2}\\right)^6 x^2 y^6\n\\]\n\nWhich is exactly what we computed. So, yes, the coefficient is 28 \u00d7 (9/25) \u00d7 (1/64) = 63/400.\n\nWait, but let me make sure about the signs. Since the term is \\(\\left(-\\frac{y}{2}\\right)^6\\), which is positive because any negative number raised to an even power is positive. So, the coefficient is indeed positive 63/400.\n\nJust to be thorough, let me compute 28 \u00d7 9 first. 28 \u00d7 9: 20 \u00d7 9 = 180, 8 \u00d7 9 = 72, so 180 + 72 = 252. Then, 25 \u00d7 64: 25 \u00d7 60 = 1500, 25 \u00d7 4 = 100, so 1500 + 100 = 1600. So, 252/1600 simplifies to 63/400.\n\nAlright, so I think I\u0027m confident that 63/400 is the correct coefficient. I don\u0027t see any errors in my reasoning.\n\n**Final Answer**\nThe coefficient of \\(x^2 y^6\\) is \\boxed{\\dfrac{63}{400}}.\n\u003c/think\u003e\n\nTo find the coefficient of \\(x^2 y^6\\) in the expansion of \\(\\left(\\frac{3}{5}x - \\frac{y}{2}\\right)^8\\), we use the binomial theorem. The binomial theorem states that each term in the expansion is of the form \\(\\binom{8}{k} \\left(\\frac{3}{5}x\\right)^{8 - k} \\left(-\\frac{y}{2}\\right)^k\\).\n\nWe need the term where the power of \\(x\\) is 2 and the power of \\(y\\) is 6. This corresponds to \\(k = 6\\) because \\(8 - k = 2\\).\n\n1. Calculate the binomial coefficient \\(\\binom{8}{6}\\):\n \\[\n \\binom{8}{6} = \\binom{8}{2} = \\frac{8 \\times 7}{2 \\times 1} = 28\n \\]\n\n2. Compute \\(\\left(\\frac{3}{5}\\right)^2\\):\n \\[\n \\left(\\frac{3}{5}\\right)^2 = \\frac{9}{25}\n \\]\n\n3. Compute \\(\\left(-\\frac{1}{2}\\right)^6\\):\n \\[\n \\left(-\\frac{1}{2}\\right)^6 = \\left(\\frac{1}{2}\\right)^6 = \\frac{1}{64}\n \\]\n\n4. Multiply these results together:\n \\[\n 28 \\times \\frac{9}{25} \\times \\frac{1}{64} = 28 \\times \\frac{9}{25} \\times \\frac{1}{64} = \\frac{252}{1600}\n \\]\n\n5. Simplify the fraction \\(\\frac{252}{1600}\\) by dividing both the numerator and the denominator by 4:\n \\[\n \\frac{252}{1600} = \\frac{63}{400}\n \\]\n\nThus, the coefficient of \\(x^2 y^6\\) is \\(\\boxed{\\dfrac{63}{400}}\\).", "statistics_text_generation_0": { "input_tokens": 77, "output_tokens": 2199 } }, "generation": "\u003cthink\u003e\nOkay, let me try to figure out the coefficient of \\(x^2 y^6\\) in the expansion of \\(\\left(\\frac{3}{5}x - \\frac{y}{2}\\right)^8\\). Hmm, I remember that when expanding a binomial like \\((a + b)^n\\), we can use the binomial theorem. The binomial theorem states that each term in the expansion is of the form \\(\\binom{n}{k} a^{n - k} b^{k}\\), where \\(k\\) ranges from 0 to \\(n\\).\n\nSo, in this problem, our binomial is \\(\\left(\\frac{3}{5}x - \\frac{y}{2}\\right)\\), and we\u0027re raising it to the 8th power. Let me denote \\(a = \\frac{3}{5}x\\) and \\(b = -\\frac{y}{2}\\). Then, the expansion will have terms of the form \\(\\binom{8}{k} \\left(\\frac{3}{5}x\\right)^{8 - k} \\left(-\\frac{y}{2}\\right)^k\\).\n\nWe need the term where the power of \\(x\\) is 2 and the power of \\(y\\) is 6. Since \\(x\\) is raised to the power of \\(8 - k\\) and \\(y\\) is raised to the power of \\(k\\), we can set up the equation \\(8 - k = 2\\). Solving for \\(k\\), we get \\(k = 6\\). So, the term we\u0027re interested in corresponds to \\(k = 6\\).\n\nNow, let\u0027s compute the coefficient for \\(k = 6\\). The binomial coefficient is \\(\\binom{8}{6}\\). I recall that \\(\\binom{n}{k} = \\binom{n}{n - k}\\), so \\(\\binom{8}{6} = \\binom{8}{2}\\). Calculating \\(\\binom{8}{2}\\), which is \\(\\frac{8 \\times 7}{2 \\times 1} = 28\\).\n\nNext, we need to compute \\(\\left(\\frac{3}{5}\\right)^{8 - 6} = \\left(\\frac{3}{5}\\right)^2\\). Let me calculate that: \\(\\left(\\frac{3}{5}\\right)^2 = \\frac{9}{25}\\).\n\nThen, we have \\(\\left(-\\frac{1}{2}\\right)^6\\). Hmm, raising a negative number to an even power gives a positive result. So, \\(\\left(-\\frac{1}{2}\\right)^6 = \\left(\\frac{1}{2}\\right)^6 = \\frac{1}{64}\\).\n\nNow, multiplying all these together: the coefficient is \\(\\binom{8}{6} \\times \\left(\\frac{3}{5}\\right)^2 \\times \\left(-\\frac{1}{2}\\right)^6 = 28 \\times \\frac{9}{25} \\times \\frac{1}{64}\\).\n\nLet me compute this step by step. First, multiply 28 and \\(\\frac{9}{25}\\). So, \\(28 \\times \\frac{9}{25}\\). Let\u0027s see, 28 divided by 25 is \\(\\frac{28}{25}\\), and then multiplied by 9 gives \\(\\frac{252}{25}\\). \n\nThen, we multiply this result by \\(\\frac{1}{64}\\): \\(\\frac{252}{25} \\times \\frac{1}{64}\\). Multiplying the numerators: 252 \u00d7 1 = 252, and denominators: 25 \u00d7 64 = 1600. So, the coefficient is \\(\\frac{252}{1600}\\).\n\nWait, can we simplify this fraction? Let\u0027s see. Both 252 and 1600 are divisible by 4. Dividing numerator and denominator by 4: 252 \u00f7 4 = 63, and 1600 \u00f7 4 = 400. So, now we have \\(\\frac{63}{400}\\). \n\nIs 63 and 400 divisible by any common number? Well, 63 is 7 \u00d7 9, and 400 is 16 \u00d7 25. They don\u0027t share any common factors besides 1, so \\(\\frac{63}{400}\\) is the simplified fraction.\n\nBut hold on, let me double-check my calculations to make sure I didn\u0027t make a mistake. So, binomial coefficient was 28, which is correct because \\(\\binom{8}{6}\\) is 28. Then, \\(\\left(\\frac{3}{5}\\right)^2 is indeed 9/25, and \\(\\left(-\\frac{1}{2}\\right)^6 is 1/64. Multiplying 28, 9/25, and 1/64:\n\n28 \u00d7 9 = 252, and 25 \u00d7 64 = 1600. So that\u0027s 252/1600. Then simplifying, dividing numerator and denominator by 4 gives 63/400. That seems correct.\n\nBut wait, I just realized that the term is \\(\\left(-\\frac{y}{2}\\right)^6\\), which is positive because 6 is even, so that\u0027s correct. So, the coefficient is positive 63/400. Hmm, that seems right.\n\nLet me think if there\u0027s another way to approach this. Maybe using the multinomial theorem? But no, in this case, since it\u0027s a binomial, the binomial theorem should suffice. Yeah, I think my approach is correct.\n\nAlternatively, I can think about the term in the expansion. The general term is:\n\n\\[\n\\binom{8}{k} \\left(\\frac{3}{5}x\\right)^{8 - k} \\left(-\\frac{y}{2}\\right)^k\n\\]\n\nWe found that when \\(k = 6\\), the term is:\n\n\\[\n\\binom{8}{6} \\left(\\frac{3}{5}\\right)^{2} \\left(-\\frac{1}{2}\\right)^6 x^2 y^6\n\\]\n\nWhich is exactly what we computed. So, yes, the coefficient is 28 \u00d7 (9/25) \u00d7 (1/64) = 63/400.\n\nWait, but let me make sure about the signs. Since the term is \\(\\left(-\\frac{y}{2}\\right)^6\\), which is positive because any negative number raised to an even power is positive. So, the coefficient is indeed positive 63/400.\n\nJust to be thorough, let me compute 28 \u00d7 9 first. 28 \u00d7 9: 20 \u00d7 9 = 180, 8 \u00d7 9 = 72, so 180 + 72 = 252. Then, 25 \u00d7 64: 25 \u00d7 60 = 1500, 25 \u00d7 4 = 100, so 1500 + 100 = 1600. So, 252/1600 simplifies to 63/400.\n\nAlright, so I think I\u0027m confident that 63/400 is the correct coefficient. I don\u0027t see any errors in my reasoning.\n\n**Final Answer**\nThe coefficient of \\(x^2 y^6\\) is \\boxed{\\dfrac{63}{400}}.\n\u003c/think\u003e\n\nTo find the coefficient of \\(x^2 y^6\\) in the expansion of \\(\\left(\\frac{3}{5}x - \\frac{y}{2}\\right)^8\\), we use the binomial theorem. The binomial theorem states that each term in the expansion is of the form \\(\\binom{8}{k} \\left(\\frac{3}{5}x\\right)^{8 - k} \\left(-\\frac{y}{2}\\right)^k\\).\n\nWe need the term where the power of \\(x\\) is 2 and the power of \\(y\\) is 6. This corresponds to \\(k = 6\\) because \\(8 - k = 2\\).\n\n1. Calculate the binomial coefficient \\(\\binom{8}{6}\\):\n \\[\n \\binom{8}{6} = \\binom{8}{2} = \\frac{8 \\times 7}{2 \\times 1} = 28\n \\]\n\n2. Compute \\(\\left(\\frac{3}{5}\\right)^2\\):\n \\[\n \\left(\\frac{3}{5}\\right)^2 = \\frac{9}{25}\n \\]\n\n3. Compute \\(\\left(-\\frac{1}{2}\\right)^6\\):\n \\[\n \\left(-\\frac{1}{2}\\right)^6 = \\left(\\frac{1}{2}\\right)^6 = \\frac{1}{64}\n \\]\n\n4. Multiply these results together:\n \\[\n 28 \\times \\frac{9}{25} \\times \\frac{1}{64} = 28 \\times \\frac{9}{25} \\times \\frac{1}{64} = \\frac{252}{1600}\n \\]\n\n5. Simplify the fraction \\(\\frac{252}{1600}\\) by dividing both the numerator and the denominator by 4:\n \\[\n \\frac{252}{1600} = \\frac{63}{400}\n \\]\n\nThus, the coefficient of \\(x^2 y^6\\) is \\(\\boxed{\\dfrac{63}{400}}\\).", "messages": [ { "content": "What is the coefficient of $x^2y^6$ in the expansion of $\\left(\\frac{3}{5}x-\\frac{y}{2}\\right)^8$? Express your answer as a common fraction.", "role": "user" }, { "content": "To determine the coefficient of \\(x^2y^6\\) in the expansion of \\(\\left(\\frac{3}{5}x - \\frac{y}{2}\\right)^8\\), we can use the binomial theorem.\n\nThe binomial theorem states:\n\\[\n(a + b)^n = \\sum_{k=0}^{n} \\binom{n}{k} a^{n-k} b^k\n\\]\n\nIn this case, \\(a = \\frac{3}{5}x\\), \\(b = -\\frac{y}{2}\\), and \\(n = 8\\).\n\nWe are interested in the term that contains \\(x^2y^6\\). In the general term of the binomial expansion:\n\\[\n\\binom{8}{k} \\left(\\frac{3}{5}x\\right)^{8-k} \\left(-\\frac{y}{2}\\right)^k\n\\]\n\nTo get \\(x^2\\), we need \\(8 - k = 2\\), thus \\(k = 6\\).\n\nSubstituting \\(k = 6\\) into the expression:\n\\[\n\\binom{8}{6} \\left(\\frac{3}{5}x\\right)^{8-6} \\left(-\\frac{y}{2}\\right)^6 = \\binom{8}{6} \\left(\\frac{3}{5}x\\right)^2 \\left(-\\frac{y}{2}\\right)^6\n\\]\n\nNow, we will compute each part of this expression.\n\n1. Calculate the binomial coefficient \\(\\binom{8}{6}\\).\n2. Compute \\(\\left(\\frac{3}{5}\\right)^2\\).\n3. Compute \\(\\left(-\\frac{y}{2}\\right)^6\\).\n4. Combine everything together to get the coefficient of \\(x^2y^6\\).\n\nLet\u0027s compute these in Python.\n```python\nfrom math import comb\n\n# Given values\nn = 8\nk = 6\n\n# Calculate the binomial coefficient\nbinom_coeff = comb(n, k)\n\n# Compute (3/5)^2\na_term = (3/5)**2\n\n# Compute (-1/2)^6\nb_term = (-1/2)**6\n\n# Combine terms to get the coefficient of x^2y^6\ncoefficient = binom_coeff * a_term * b_term\nprint(coefficient)\n```\n```output\n0.1575\n```\nThe coefficient of \\(x^2y^6\\) in the expansion of \\(\\left(\\frac{3}{5}x - \\frac{y}{2}\\right)^8\\) is \\(0.1575\\). To express this as a common fraction, we recognize that:\n\n\\[ 0.1575 = \\frac{1575}{10000} = \\frac{63}{400} \\]\n\nThus, the coefficient can be expressed as:\n\n\\[\n\\boxed{\\frac{63}{400}}\n\\]", "role": "assistant" } ], "model_name": "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B", "problem": "What is the coefficient of $x^2y^6$ in the expansion of $\\left(\\frac{3}{5}x-\\frac{y}{2}\\right)^8$? Express your answer as a common fraction.", "solution": "To determine the coefficient of \\(x^2y^6\\) in the expansion of \\(\\left(\\frac{3}{5}x - \\frac{y}{2}\\right)^8\\), we can use the binomial theorem.\n\nThe binomial theorem states:\n\\[\n(a + b)^n = \\sum_{k=0}^{n} \\binom{n}{k} a^{n-k} b^k\n\\]\n\nIn this case, \\(a = \\frac{3}{5}x\\), \\(b = -\\frac{y}{2}\\), and \\(n = 8\\).\n\nWe are interested in the term that contains \\(x^2y^6\\). In the general term of the binomial expansion:\n\\[\n\\binom{8}{k} \\left(\\frac{3}{5}x\\right)^{8-k} \\left(-\\frac{y}{2}\\right)^k\n\\]\n\nTo get \\(x^2\\), we need \\(8 - k = 2\\), thus \\(k = 6\\).\n\nSubstituting \\(k = 6\\) into the expression:\n\\[\n\\binom{8}{6} \\left(\\frac{3}{5}x\\right)^{8-6} \\left(-\\frac{y}{2}\\right)^6 = \\binom{8}{6} \\left(\\frac{3}{5}x\\right)^2 \\left(-\\frac{y}{2}\\right)^6\n\\]\n\nNow, we will compute each part of this expression.\n\n1. Calculate the binomial coefficient \\(\\binom{8}{6}\\).\n2. Compute \\(\\left(\\frac{3}{5}\\right)^2\\).\n3. Compute \\(\\left(-\\frac{y}{2}\\right)^6\\).\n4. Combine everything together to get the coefficient of \\(x^2y^6\\).\n\nLet\u0027s compute these in Python.\n```python\nfrom math import comb\n\n# Given values\nn = 8\nk = 6\n\n# Calculate the binomial coefficient\nbinom_coeff = comb(n, k)\n\n# Compute (3/5)^2\na_term = (3/5)**2\n\n# Compute (-1/2)^6\nb_term = (-1/2)**6\n\n# Combine terms to get the coefficient of x^2y^6\ncoefficient = binom_coeff * a_term * b_term\nprint(coefficient)\n```\n```output\n0.1575\n```\nThe coefficient of \\(x^2y^6\\) in the expansion of \\(\\left(\\frac{3}{5}x - \\frac{y}{2}\\right)^8\\) is \\(0.1575\\). To express this as a common fraction, we recognize that:\n\n\\[ 0.1575 = \\frac{1575}{10000} = \\frac{63}{400} \\]\n\nThus, the coefficient can be expressed as:\n\n\\[\n\\boxed{\\frac{63}{400}}\n\\]" } ``` This subset can be loaded as: ```python from datasets import load_dataset ds = load_dataset("anthonyj/numina-deepseek-r1-qwen-7b", "default") ``` Or simply as it follows, since there's only one configuration and is named `default`: ```python from datasets import load_dataset ds = load_dataset("anthonyj/numina-deepseek-r1-qwen-7b") ``` </details>
demeguyessa/Dame
demeguyessa
2025-06-24T16:49:11Z
0
0
[ "license:apache-2.0", "region:us" ]
[]
2025-06-24T16:49:11Z
0
--- license: apache-2.0 ---
sghosts/rand-tezler-firstlast20-little-sample_alpFirst20pages2pdf
sghosts
2025-03-08T13:35:45Z
16
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-08T13:35:43Z
0
--- dataset_info: features: - name: subdir dtype: string - name: pdf_path dtype: string - name: page_num dtype: int64 - name: image dtype: image - name: alpFirst20pages2pdf dtype: int64 splits: - name: train num_bytes: 6780515.0 num_examples: 80 download_size: 6761744 dataset_size: 6780515.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
Ben10x/lvm_bird_spectrogram
Ben10x
2025-04-08T20:31:43Z
39
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:image", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-08T20:27:54Z
0
--- dataset_info: features: - name: input_image dtype: image - name: output_image dtype: binary splits: - name: train num_bytes: 24982701187.125 num_examples: 61375 - name: test num_bytes: 4471537621.0 num_examples: 10832 download_size: 4725229980 dataset_size: 29454238808.125 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
dive-lab/ShockCast
dive-lab
2025-06-08T02:41:10Z
0
0
[ "license:cc-by-nc-sa-4.0", "region:us" ]
[]
2025-06-08T02:21:43Z
0
--- license: cc-by-nc-sa-4.0 ---
infinite-dataset-hub/PregnancyBotConvo
infinite-dataset-hub
2025-02-05T18:00:16Z
12
0
[ "license:mit", "size_categories:n<1K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "infinite-dataset-hub", "synthetic" ]
[]
2024-11-22T19:00:27Z
0
--- license: mit tags: - infinite-dataset-hub - synthetic --- # PregnancyBotConvo tags: ConversationalAI, Pregnancy, Healthcare _Note: This is an AI-generated dataset so its content may be inaccurate or false_ **Dataset Description:** The 'PregnancyBotConvo' dataset is designed for training conversational AI models that are focused on providing assistance and information to individuals who are expecting a baby. The dataset consists of various conversational excerpts that deal with common queries and concerns during pregnancy. Each row in the dataset represents a single interaction with a user seeking information or advice. The dataset is tagged with labels to categorize the type of inquiry or advice provided. **CSV Content Preview:** ```csv "dialogue_id","user_input","bot_response","label" "001","What are some good exercises during pregnancy?","Certain exercises can help maintain fitness and prepare your body for labor. It's best to consult with your healthcare provider before starting any new exercise routine during pregnancy.","Exercise_Advice" "002","I'm worried about morning sickness. Any tips?","There are several strategies to help manage morning sickness, such as eating small, frequent meals, avoiding strong odors, and ginger can be soothing. Always speak to your healthcare provider for personalized advice.","Morning_Sickness_Advice" "003","What should I know about prenatal vitamins?","Prenatal vitamins are crucial for your baby's development and can help prevent certain birth defects. Make sure to choose a reputable brand and discuss with your healthcare provider to find the best option for you.","Prenatal_Vitamins_Info" "004","How can I prepare for a natural birth?","Preparing for a natural birth involves understanding your options and working with your healthcare provider. You might consider attending childbirth education classes, creating a birth plan, and practicing relaxation techniques.","Birth_Preparation_Advice" "005","I'm feeling anxious about childbirth. What should I do?","Feeling anxious about childbirth is common. It's important to communicate your feelings with your healthcare provider. They can provide support and refer you to counseling services if necessary.","Anxiety_Relief_Advice" ``` **Source of the data:** The dataset was generated using the [Infinite Dataset Hub](https://huggingface.co/spaces/infinite-dataset-hub/infinite-dataset-hub) and microsoft/Phi-3-mini-4k-instruct using the query '': - **Dataset Generation Page**: https://huggingface.co/spaces/infinite-dataset-hub/infinite-dataset-hub?q=&dataset=PregnancyBotConvo&tags=ConversationalAI,+Pregnancy,+Healthcare - **Model**: https://huggingface.co/microsoft/Phi-3-mini-4k-instruct - **More Datasets**: https://huggingface.co/datasets?other=infinite-dataset-hub
Ehsanrs2/Forex_Factory_Calendar
Ehsanrs2
2025-04-14T11:03:04Z
89
2
[ "task_categories:time-series-forecasting", "task_categories:tabular-classification", "task_categories:tabular-regression", "language:en", "license:mit", "size_categories:10K<n<100K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "forex", "economic-calendar", "financial-data", "macro-economics", "trading-strategy", "time-series", "market-events", "selenium", "pandas", "scraper" ]
[ "time-series-forecasting", "tabular-classification", "tabular-regression" ]
2025-04-14T10:29:10Z
0
--- license: mit language: - en task_categories: - time-series-forecasting - tabular-classification - tabular-regression tags: - forex - economic-calendar - financial-data - macro-economics - trading-strategy - time-series - market-events - selenium - pandas - scraper pretty_name: Forex Factory Economic Calendar (2007–2025) size_categories: - 10K<n<100K --- # 📅 Forex Factory Economic Calendar Dataset (2007-01-01 to 2025-04-07) This dataset contains a comprehensive archive of macroeconomic calendar events sourced from [Forex Factory](https://www.forexfactory.com/calendar), spanning from **January 1, 2007** to **April 7, 2025**. Each row captures a specific event with detailed metadata including currency, event type, market impact level, reported values, and descriptive context. --- ## 📦 Dataset Summary - **Total timespan:** 2007-01-01 → 2025-04-07 - **Format:** CSV (UTF-8) - **Timezone:** Asia/Tehran - **Detailed fields included** --- ## 🧾 Columns | Column | Description | |-------------|-----------------------------------------------------------------------------| | `DateTime` | Date and time of the event in ISO 8601 format | | `Currency` | Currency affected by the event (e.g., USD, EUR, GBP) | | `Impact` | Impact level: Low, Medium, or High Impact Expected | | `Event` | Name of the economic event | | `Actual` | Reported value of the indicator (if available) | | `Forecast` | Forecasted value | | `Previous` | Previously reported value | | `Detail` | Rich description including source, frequency, and why it matters to traders | --- ## 🔍 Example ```csv 2007-01-01T04:30:00+03:30,CNY,High Impact Expected,Manufacturing PMI,54.8,,55.3,"Source: CFLP (latest release) | Measures: Level of a diffusion index based on surveyed purchasing managers..." ``` --- ## 💼 Use Cases - Financial time series forecasting - Event-driven backtesting in algorithmic trading - Economic policy impact analysis - Macro indicators modeling for global trends - Educational purposes in finance and economics --- ## ⚙️ How It Was Built The data was collected using a custom Python scraper using: - [Selenium](https://pypi.org/project/selenium/) (via `undetected-chromedriver`) - [pandas](https://pandas.pydata.org/) for CSV export and manipulation - Incremental scraping and detailed event parsing - Timezone-aware timestamping GitHub repository (scraper code): [🔗 Link to repository](https://github.com/ehsanrs2/forexfactory-scraper) --- ## 🛡 Disclaimer This dataset is intended for **educational and research purposes only**. Data was collected from [Forex Factory](https://www.forexfactory.com/) using publicly accessible web content. This project is **not affiliated, endorsed, or sponsored by Forex Factory** in any way. Please respect [Forex Factory’s Terms of Use](https://www.forexfactory.com/notices). Do not use this dataset for commercial purposes or redistribution without checking the original source's policies. --- ## 📚 Citation If you use this dataset in your work, please cite it as: ``` @misc{forexcalendar2025, title={Forex Factory Economic Calendar Dataset (2007–2025)}, author={Ehsan}, year={2025}, howpublished={\url{https://huggingface.co/datasets/yourusername/forex-factory-calendar}}, note={Accessed: YYYY-MM-DD} } ``` --- ## 🏷 Tags `forex` `financial-data` `economic-calendar` `macro-economics` `time-series` `trading-strategy` `pandas` `selenium` `market-events` ```
zpc2090/charades_8frames_new
zpc2090
2025-03-09T12:34:10Z
12
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-09T12:31:48Z
0
--- dataset_info: features: - name: images sequence: image - name: problem dtype: string - name: answer dtype: string splits: - name: train num_bytes: 1178315908.0 num_examples: 4000 - name: validation num_bytes: 143995676.0 num_examples: 500 - name: test num_bytes: 147022601.0 num_examples: 500 download_size: 520776598 dataset_size: 1469334185.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
carminho/piqa-mt-pt
carminho
2025-06-05T16:45:51Z
0
0
[ "language:pt", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T12:57:09Z
0
--- language: - pt configs: - config_name: default data_files: - split: train path: piqa_train_pt.jsonl - split: test path: piqa_test_pt.jsonl - split: validation path: piqa_validation_pt.jsonl ---
1231czx/dstrain_orm_2e6_bz128_head_test_ms_math
1231czx
2024-12-04T10:17:01Z
54
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-04T10:16:57Z
0
--- dataset_info: features: - name: prompt dtype: string - name: answers sequence: string - name: rewards sequence: float64 - name: label sequence: int64 splits: - name: train num_bytes: 318457011 num_examples: 500 download_size: 71900257 dataset_size: 318457011 configs: - config_name: default data_files: - split: train path: data/train-* ---
deutsche-telekom/Ger-RAG-eval
deutsche-telekom
2024-08-23T11:10:52Z
192
45
[ "language:de", "license:cc-by-sa-4.0", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-04-07T19:45:49Z
2
--- license: cc-by-sa-4.0 language: - de size_categories: - 1K<n<10K configs: - config_name: task1 data_files: - split: test path: "task1_test.parquet" - config_name: task2 data_files: - split: test path: "task2_test.parquet" - config_name: task3 data_files: - split: test path: "task3_test.parquet" - config_name: task4 data_files: - split: test path: "task4_test.parquet" --- # German RAG LLM Evaluation Dataset This dataset is intended for the evaluation of German RAG (retrieval augmented generation) capabilities of LLM models. It is based on the test set of the [deutsche-telekom/wikipedia-22-12-de-dpr](https://huggingface.co/datasets/deutsche-telekom/wikipedia-22-12-de-dpr) data set (also see [wikipedia-22-12-de-dpr on GitHub](https://github.com/telekom/wikipedia-22-12-de-dpr)) and consists of 4 subsets or tasks. ## Task Description The dataset consists of 4 subsets for the following 4 tasks (each task with 1000 prompts): ### choose_context_by_question (subset task2) Given is a question and 4 contexts. The task is to decide which context can answer the question. Example: ```text Auf Basis welcher der folgenden Kontexte (A oder B oder C oder D) lässt sich die Frage beantworten? Frage: Wie wurde Saidi im Januar 2006 noch einmal deutscher Meister? Kontexte: A: Ceferino Garcia (* 26. August 1906 in Naval, Biliran; † 1. Januar 1981 in San Diego, Kalifornien, Vereinigte Staaten) war ein philippinischer Boxer im Mittelgewicht. Der von den Philippinen stammende Garcia, der nach anderen Angaben bereits um 1903 geboren wurde, begann seine Karriere als Boxer 1923 zunächst im Weltergewicht und gewann am 2. Oktober 1939 den Weltmeistertitel der NYSAC im Mittelgewicht der "International Boxing Union" bei einem Kampf gegen Fred Apostoli in New York City, den er in den siebten Runde durch ein Knockout. Am 23. Dezember 1939 verteidigte er seinen Titel in Manila gegen Glen Lee durch ein technisches K.O. Sein Sieg im Mittelgewichtstitelkampf am 1. März 1940 gegen Henry Armstrong, gegen den er im Weltergewicht schon mal verloren hatte, gilt als Fehlurteil. 1945 beendete er seine Karriere nach 18 Jahren, wobei er 67 Mal durch KO gewann sowie weitere 24 Mal durch Punkteentscheidung. Garcia wurde besonders durch seinen Kampfstil bekannt und dem von ihm verwendeten sogenannten „Bolo Punch“, den er wie einen Aufwärtshaken anwendete. Einer seiner Coachs war Ray Arcel. B: Ernst Stimmel (* 23. März 1891 in Hamburg; † 28. März 1978 in Reichenau) war ein deutscher Schauspieler und Autor. Nach Abitur und Studium wurde Ernst Stimmel 1919 in München mit der Dissertation "Einfluß der Schopenhauerschen Philosophie auf Wilhelm Raabe" promoviert. In den 1930er und 1940er Jahren wirkte er in vielen Filmproduktionen als Darsteller überwiegend in Nebenrollen mit. Darunter befanden sich die nationalsozialistischen Propagandafilme "Jud Süß", "Die Rothschilds" und "Kampfgeschwader Lützow", die heute in Deutschland als Vorbehaltsfilme nur unter bestimmten Voraussetzungen aufgeführt werden können. Ernst Stimmel spielte aber auch in Unterhaltungs- und Historienfilmen wie "Der Gasmann" mit Heinz Rühmann, "Der große König" mit Otto Gebühr und "Die Entlassung" mit Emil Jannings. Zudem war er an dem Film "Zwischen Herz und Gewissen" beteiligt, der als Überläufer erst im Jahr 1951 uraufgeführt wurde, obwohl dieser kurz vor Ende des Zweiten Weltkriegs noch unter dem Titel "Das fremde Leben" fertiggestellt wurde. C: Saidis Laufbahn als Berufsboxer begann mit einem Kampf im November 1989, seinen letzten Kampf bestritt er im Dezember 2006. Im Mai 1990 gewann er gegen Andreas Schweiger die internationale deutsche Meisterschaft im Halbschwergewicht und wurde im Juni 1990 deutscher Schwergewichtsmeister. Im November 1992 wurde Saidi durch einen Sieg über Rund Kanika aus dem Kongo Afrikameister im Halbschwergewicht. Er musste den internationalen deutschen Meistertitel abgegeben, nachdem er im Februar 1993 gegen Dariusz Michalczewski verloren hatte. Saidi wurde im April 1994 Weltmeister im Halbschwergewicht nach Version der WBF. Er sicherte sich Ende Januar 1997 den deutschen Meistertitel im Halbschwergewicht, diesen verlor er im Dezember desselben Jahres wieder, als er gegen Sven Ottke verlor. Im Februar 1999 boxte Saidi wieder um die deutsche Meisterschaft im Halbschwergewicht, verlor aber gegen Thomas Ulrich. Anschließend legte er eine jahrelange Pause ein, im Mai 2005 kehrte Saidi in den Ring zurück. Noch einmal deutscher Meister, diesmal im Cruisergewicht, wurde er im Januar 2006 durch einen Sieg über Mario Stein. D: Uwe Boegelsack (* 2. Dezember 1939 in Gommern; † 28. Januar 2017) war ein deutscher Politiker der Sozialistischen Einheitspartei Deutschlands (SED) in der Deutschen Demokratischen Republik (DDR). Er war von 1984 bis 1987 stellvertretender Minister für Elektrotechnik und Elektronik und von 1987 bis 1990 Generaldirektor des "VEB Kombinat Rundfunk und Fernsehen Staßfurt". Boegelsack, Sohn eines Angestellten, arbeitete nach dem Abitur 1958 als Stanzer und Hilfsarbeiter und wurde 1961 Setzer und Feiler. ``` ### choose_question_by_context (subset task1) Given is a context and 4 questions. The task is to decide which question can be answered by the context. Example: ```text Welche der folgenden Fragen (A oder B oder C oder D) lässt sich anhand des Kontext beantworten? Kontext: Lsjbot ist ein von Lars Sverker Johansson (Akronym "Lsj") betriebener Bot, der aus digitalen Informationsquellen und Datenbanken kurze Wikipedia-Artikel („Stubs“) in schwedischer Sprache sowie in Cebuano und Wáray-Wáray, zwei auf den Philippinen gesprochenen Sprachen, generierte. Am 15. Juni 2013 überschritt die schwedischsprachige Wikipedia durch einen von Lsjbot erstellten Artikel über die Schmetterlingsart "Erysichton elaborata" die Schwelle von einer Million Artikeln. Zu diesem Zeitpunkt war rund die Hälfte des Artikelbestands der schwedischen Wikipedia botgeneriert. Etwa ein Drittel der von Lsjbot erstellten Artikel wurden für die schwedische Wikipedia erstellt. Im August 2013 erzeugte Lsjbot mit etwa täglich 7200 Artikeln für die schwedische Wikipedia die meisten Artikel pro Tag für eine Wikipedia. Laut "The Wall Street Journal" hatte Lsjbot im Juli 2014 bereits rund 2,7 Millionen Artikel in Wikipedia eingestellt, was zu dieser Zeit etwa 8,5 Prozent des gesamten Bestandes der Wikipedia entsprach. Für die Artikelproduktion griff Lsjbot auf Datenbanken wie den Catalogue of Life zu, wobei offenbar veraltete Offline-Kopien genutzt wurden. Fragen: A: Welche Schmetterlingsart wurde durch einen von Lsjbot erstellten Artikel bekannt? B: Welche Partei stand der Hannoverschen Landeszeitung nahe? C: In welchem Jahr wurde die Anwendungssoftware erstmals erstellt? D: Wo werden die Server der Enciclopedia Libre Universal en Español betrieben? ``` ### context_question_match (subset task4) Given is a context and a question. The task is to decide whether the question can be answered by the context or not. Example: ```text Lässt sich die Frage mithilfe der Informationen aus dem Kontext beantworten? Antworte mit J für ja oder N für nein. Kontext: Oren Koules (* 31. Januar 1961 in La Grange, Illinois) ist ein ehemaliger US-amerikanischer Eishockeyspieler und jetziger -funktionär, sowie Filmproduzent. Bekannt wurde er vor allem durch die Filmreihe Saw, die von seiner Produktionsfirma produziert wird. Oren Koules begann seine Karriere als Eishockeyspieler in der kanadischen Juniorenliga Western Hockey League, in der er von 1979 bis 1982 für die Portland Winter Hawks, Great Falls Americans, Medicine Hat Tigers, Spokane Flyers, Calgary Wranglers und Brandon Wheat Kings aktiv war. Bei den Great Falls Americans, die vorzeitig in ihrer Premierensaison den Spielbetrieb einstellten, hält er mit neun Treffern den Rekord als bester Torschütze in der Franchise-Geschichte. Gegen Ende der Saison 1981/82 bestritt der Flügelspieler zudem ein Spiel für die Saginaw Gears in der International Hockey League. Die Frage: Bei welchem Verein war Thomas Kleine zweieinhalb Jahre Kapitän? ``` ### question_answer_match (subset task3) Given is a question and an answer. The task is to decide whether the answer actualy answers the question. Example: ```text Beantwortet die Antwort wirklich die Frage? Antworte mit J für ja oder N für nein. Die Frage: Mit welchem Unternehmen fusionierte die Adesso AG im Jahr 2006? Die Antwort: Bruno Zumino erwarb sein Physik-Diplom an der Universität Rom im Jahr 1945. ``` ## Usage This evaluation task is implemented in [LightEval](https://github.com/huggingface/lighteval): - <https://github.com/huggingface/lighteval/blob/main/community_tasks/german_rag_evals.py> - <https://github.com/huggingface/lighteval/blob/main/examples/tasks/all_german_rag_evals.txt> <span style="color:red;font-weight:bold">Important note:</span> Unfortunately, after the implementation in LightEval, we found another weakness in the prompt. This was fixed by 23. April 2024 in PR [Fix prompt format german rag community task #171](https://github.com/huggingface/lighteval/pull/171). Each evaluation done before this date should be carried out again. Unfortunately, LightEval does not yet support versioning of tasks. This will hopefully be added later (see also [Version of a task should be configurable. #172](https://github.com/huggingface/lighteval/issues/172)). To run the tests on a multi GPU setup, you must first be in the LightEval root directory. It can be run by: ```bash # this is a hack to avoid a bug while loading the dataset # see https://github.com/huggingface/lighteval/issues/278 export HF_DATASETS_TRUST_REMOTE_CODE=TRUE export MODEL_NAME="DiscoResearch/DiscoLM_German_7b_v1" accelerate launch --multi_gpu --num_processes=2 -m \ lighteval accelerate \ --model_args "pretrained=$MODEL_NAME,model_parallel=True,trust_remote_code=True" \ --use_chat_template \ --override_batch_size 1 \ --tasks "examples/tasks/all_german_rag_evals.txt" \ --custom_tasks "community_tasks/german_rag_evals.py" \ --output_dir="./evals/" ``` ## Results The evaluation was carried out with [LightEval](https://github.com/huggingface/lighteval) and the `--use_chat_template --override_batch_size 1` options. For details see [telekom/llm_evaluation_results](https://github.com/telekom/llm_evaluation_results). | model name | choose context by question acc | choose question by context acc | context question match acc | question answer match acc | all acc | all acc stderr | |:---------------------------------------------------------|---------------------------------:|---------------------------------:|-----------------------------:|----------------------------:|----------:|-----------------:| | mistralai/Mixtral-8x22B-Instruct-v0.1 | 0.998 | 1 | 0.967 | 0.986 | 0.98775 | 0.00269564 | | VAGOsolutions/Llama-3-SauerkrautLM-70b-Instruct | 0.998 | 1 | 0.973 | 0.949 | 0.98 | 0.0033755 | | VAGOsolutions/SauerkrautLM-Mixtral-8x7B-Instruct | 0.953 | 0.998 | 0.975 | 0.974 | 0.975 | 0.00452096 | | mistralai/Mixtral-8x7B-Instruct-v0.1 | 0.94 | 0.998 | 0.973 | 0.973 | 0.971 | 0.00479586 | | meta-llama/Meta-Llama-3-70B-Instruct | 0.94 | 1 | 0.974 | 0.946 | 0.965 | 0.00492486 | | microsoft/Phi-3-mini-4k-instruct | 0.847 | 0.998 | 0.965 | 0.964 | 0.9435 | 0.00612787 | | VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct | 0.928 | 0.824 | 0.982 | 0.906 | 0.91 | 0.00841656 | | meta-llama/Meta-Llama-3-8B-Instruct | 0.725 | 0.855 | 0.977 | 0.943 | 0.875 | 0.00933624 | | DiscoResearch/DiscoLM_German_7b_v1 | 0.625 | 0.991 | 0.914 | 0.927 | 0.86425 | 0.0088514 | | occiglot/occiglot-7b-de-en-instruct | 0.343 | 0.994 | 0.863 | 0.969 | 0.79225 | 0.00845623 | | occiglot/occiglot-7b-eu5-instruct | 0.722 | 0.982 | 0.587 | 0.814 | 0.77625 | 0.0115674 | | LeoLM/leo-mistral-hessianai-7b-chat | 0.865 | 0.949 | 0.735 | 0.52 | 0.76725 | 0.0118855 | | occiglot/occiglot-7b-de-en | 0.453 | 0.698 | 0.501 | 0.5 | 0.538 | 0.0154785 | | DiscoResearch/Llama3_DiscoLM_German_8b_v0.1_experimental | 0.303 | 0.28 | 0.751 | 0.594 | 0.482 | 0.0144911 | | occiglot/occiglot-7b-eu5 | 0.327 | 0.582 | 0.5 | 0.5 | 0.47725 | 0.0155215 | The evaluation results for the first (old) prompt version can be seen here: <https://huggingface.co/datasets/deutsche-telekom/Ger-RAG-eval/blob/main/old-eval.md> ## Licensing The Wikipedia texts are licensed under [CC BY-SA 4.0 Deed](https://creativecommons.org/licenses/by-sa/4.0/deed) by the corresponding authors of the [German Wikipedia](https://de.wikipedia.org/).\ The questions and answers are copyright ([CC BY-SA 4.0 Deed](https://creativecommons.org/licenses/by-sa/4.0/deed)) by [Philip May](https://philipmay.org), [Deutsche Telekom AG](https://www.telekom.de/).
cfrench/matcha_stir
cfrench
2025-04-20T18:29:46Z
72
0
[ "task_categories:robotics", "size_categories:n<1K", "modality:video", "library:datasets", "library:mlcroissant", "region:us", "phosphobot", "so100", "phospho-dk" ]
[ "robotics" ]
2025-04-20T15:44:47Z
0
--- tags: - phosphobot - so100 - phospho-dk task_categories: - robotics --- # matcha_stir **This dataset was generated using a [phospho starter pack](https://robots.phospho.ai).** This dataset contains a series of episodes recorded with a robot and multiple cameras. It can be directly used to train a policy using imitation learning. It's compatible with LeRobot and RLDS.
laolaorkk/stage1_sampled
laolaorkk
2025-04-10T11:18:07Z
13
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-10T11:11:48Z
0
--- dataset_info: features: - name: problem dtype: string - name: answer dtype: string - name: solution dtype: string - name: difficulty dtype: float64 splits: - name: train num_bytes: 1306582 num_examples: 1000 download_size: 693439 dataset_size: 1306582 configs: - config_name: default data_files: - split: train path: data/train-* ---
Upstboy/2234234
Upstboy
2025-06-24T22:36:02Z
0
0
[ "task_categories:robotics", "size_categories:n<1K", "modality:video", "library:datasets", "library:mlcroissant", "region:us", "phosphobot", "so100", "phospho-dk" ]
[ "robotics" ]
2025-06-24T21:41:02Z
0
--- tags: - phosphobot - so100 - phospho-dk task_categories: - robotics --- # 2234234 **This dataset was generated using a [phospho starter pack](https://robots.phospho.ai).** This dataset contains a series of episodes recorded with a robot and multiple cameras. It can be directly used to train a policy using imitation learning. It's compatible with LeRobot and RLDS.
Majinuub/Resume_Parsing
Majinuub
2025-03-03T18:09:16Z
41
2
[ "license:apache-2.0", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-03T15:23:03Z
0
--- license: apache-2.0 ---
AmarHelio/record-test13
AmarHelio
2025-06-15T03:17:44Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-06-15T03:14:49Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so101_follower", "total_episodes": 2, "total_frames": 3013, "total_tasks": 1, "total_videos": 2, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "shoulder_pan.pos", "shoulder_lift.pos", "elbow_flex.pos", "wrist_flex.pos", "wrist_roll.pos", "gripper.pos" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "shoulder_pan.pos", "shoulder_lift.pos", "elbow_flex.pos", "wrist_flex.pos", "wrist_roll.pos", "gripper.pos" ] }, "observation.images.front": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
neuralnets/letter_bench
neuralnets
2025-02-20T15:59:11Z
22
4
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-20T15:58:14Z
0
--- dataset_info: features: - name: Question dtype: string - name: Answer dtype: int64 splits: - name: data num_bytes: 2422854.0956118037 num_examples: 50000 download_size: 817336 dataset_size: 2422854.0956118037 configs: - config_name: default data_files: - split: data path: data/data-* ---
RyanYr/reflect_mini8bSFTt2_mini8BSFTt1_om2g8kom2AG40k_iPSDP_it1_t02_correct
RyanYr
2025-03-26T01:52:42Z
68
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-30T20:34:22Z
0
--- dataset_info: features: - name: prompt dtype: string - name: response dtype: string - name: comment dtype: string splits: - name: train num_bytes: 308256414.0 num_examples: 112647 download_size: 113449184 dataset_size: 308256414.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
dgambettavuw/D_gen0_run0_llama2-7b_sciabs_doc1000_real64_synt64_vuw
dgambettavuw
2024-12-23T03:52:24Z
16
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-23T03:52:21Z
0
--- dataset_info: features: - name: id dtype: int64 - name: doc dtype: string splits: - name: train num_bytes: 742290 num_examples: 1000 download_size: 384889 dataset_size: 742290 configs: - config_name: default data_files: - split: train path: data/train-* ---
techiaith/macsen_intent_parsing
techiaith
2025-03-31T11:41:00Z
22
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-31T11:40:59Z
0
--- dataset_info: features: - name: sentence dtype: string - name: response dtype: string splits: - name: train num_bytes: 46290 num_examples: 350 download_size: 13437 dataset_size: 46290 configs: - config_name: default data_files: - split: train path: data/train-* ---
ZixuanKe/fingpt_convfinqa_sup_sample_from_policy_v1.1_dpo_val_chunk_26
ZixuanKe
2024-11-23T01:27:25Z
15
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-23T01:27:24Z
0
--- dataset_info: features: - name: prompt dtype: string - name: rejected dtype: string - name: chosen dtype: string splits: - name: train num_bytes: 272952 num_examples: 49 download_size: 42683 dataset_size: 272952 configs: - config_name: default data_files: - split: train path: data/train-* ---
mteb/multi-hatecheck
mteb
2025-05-04T16:08:10Z
33
0
[ "task_categories:text-classification", "task_ids:sentiment-analysis", "task_ids:sentiment-scoring", "task_ids:sentiment-classification", "task_ids:hate-speech-detection", "annotations_creators:expert-annotated", "multilinguality:multilingual", "language:ara", "language:cmn", "language:deu", "language:eng", "language:fra", "language:hin", "language:ita", "language:nld", "language:pol", "language:por", "language:spa", "license:cc-by-4.0", "size_categories:10K<n<100K", "modality:text", "arxiv:2502.13595", "arxiv:2210.07316", "region:us", "mteb", "text" ]
[ "text-classification" ]
2024-04-19T20:47:19Z
0
--- annotations_creators: - expert-annotated language: - ara - cmn - deu - eng - fra - hin - ita - nld - pol - por - spa license: cc-by-4.0 multilinguality: multilingual size_categories: - 10K<n<100K task_categories: - text-classification task_ids: - sentiment-analysis - sentiment-scoring - sentiment-classification - hate-speech-detection configs: - config_name: default data_files: - path: test/*.jsonl.gz split: test - config_name: hin data_files: - path: multi-hatecheck/test/hin.jsonl.gz split: test - config_name: spa data_files: - path: multi-hatecheck/test/spa.jsonl.gz split: test - config_name: pol data_files: - path: multi-hatecheck/test/pol.jsonl.gz split: test - config_name: eng data_files: - path: multi-hatecheck/test/eng.jsonl.gz split: test - config_name: fra data_files: - path: multi-hatecheck/test/fra.jsonl.gz split: test - config_name: nld data_files: - path: multi-hatecheck/test/nld.jsonl.gz split: test - config_name: ita data_files: - path: multi-hatecheck/test/ita.jsonl.gz split: test - config_name: deu data_files: - path: multi-hatecheck/test/deu.jsonl.gz split: test - config_name: ara data_files: - path: multi-hatecheck/test/ara.jsonl.gz split: test - config_name: por data_files: - path: multi-hatecheck/test/por.jsonl.gz split: test - config_name: cmn data_files: - path: multi-hatecheck/test/cmn.jsonl.gz split: test tags: - mteb - text --- <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md --> <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;"> <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">MultiHateClassification</h1> <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div> <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div> </div> Hate speech detection dataset with binary (hateful vs non-hateful) labels. Includes 25+ distinct types of hate and challenging non-hate, and 11 languages. | | | |---------------|---------------------------------------------| | Task category | t2c | | Domains | Constructed, Written | | Reference | https://aclanthology.org/2022.woah-1.15/ | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["MultiHateClassification"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` <!-- Datasets want link to arxiv in readme to autolink dataset with paper --> To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @inproceedings{rottger-etal-2021-hatecheck, abstract = {Detecting online hate is a difficult task that even state-of-the-art models struggle with. Typically, hate speech detection models are evaluated by measuring their performance on held-out test data using metrics such as accuracy and F1 score. However, this approach makes it difficult to identify specific model weak points. It also risks overestimating generalisable model performance due to increasingly well-evidenced systematic gaps and biases in hate speech datasets. To enable more targeted diagnostic insights, we introduce HateCheck, a suite of functional tests for hate speech detection models. We specify 29 model functionalities motivated by a review of previous research and a series of interviews with civil society stakeholders. We craft test cases for each functionality and validate their quality through a structured annotation process. To illustrate HateCheck{'}s utility, we test near-state-of-the-art transformer models as well as two popular commercial models, revealing critical model weaknesses.}, address = {Online}, author = {R{\"o}ttger, Paul and Vidgen, Bertie and Nguyen, Dong and Waseem, Zeerak and Margetts, Helen and Pierrehumbert, Janet}, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)}, doi = {10.18653/v1/2021.acl-long.4}, editor = {Zong, Chengqing and Xia, Fei and Li, Wenjie and Navigli, Roberto}, month = aug, pages = {41--58}, publisher = {Association for Computational Linguistics}, title = {{H}ate{C}heck: Functional Tests for Hate Speech Detection Models}, url = {https://aclanthology.org/2021.acl-long.4}, year = {2021}, } @inproceedings{rottger-etal-2022-multilingual, abstract = {Hate speech detection models are typically evaluated on held-out test sets. However, this risks painting an incomplete and potentially misleading picture of model performance because of increasingly well-documented systematic gaps and biases in hate speech datasets. To enable more targeted diagnostic insights, recent research has thus introduced functional tests for hate speech detection models. However, these tests currently only exist for English-language content, which means that they cannot support the development of more effective models in other languages spoken by billions across the world. To help address this issue, we introduce Multilingual HateCheck (MHC), a suite of functional tests for multilingual hate speech detection models. MHC covers 34 functionalities across ten languages, which is more languages than any other hate speech dataset. To illustrate MHC{'}s utility, we train and test a high-performing multilingual hate speech detection model, and reveal critical model weaknesses for monolingual and cross-lingual applications.}, address = {Seattle, Washington (Hybrid)}, author = {R{\"o}ttger, Paul and Seelawi, Haitham and Nozza, Debora and Talat, Zeerak and Vidgen, Bertie}, booktitle = {Proceedings of the Sixth Workshop on Online Abuse and Harms (WOAH)}, doi = {10.18653/v1/2022.woah-1.15}, editor = {Narang, Kanika and Mostafazadeh Davani, Aida and Mathias, Lambert and Vidgen, Bertie and Talat, Zeerak}, month = jul, pages = {154--169}, publisher = {Association for Computational Linguistics}, title = {Multilingual {H}ate{C}heck: Functional Tests for Multilingual Hate Speech Detection Models}, url = {https://aclanthology.org/2022.woah-1.15}, year = {2022}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics <details> <summary> Dataset Statistics</summary> The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("MultiHateClassification") desc_stats = task.metadata.descriptive_stats ``` ```json { "test": { "num_samples": 11000, "number_of_characters": 502013, "number_texts_intersect_with_train": 16, "min_text_length": 1, "average_text_length": 45.63754545454545, "max_text_length": 135, "unique_text": 10990, "unique_labels": 2, "labels": { "0": { "count": 7661 }, "1": { "count": 3339 } } }, "train": { "num_samples": 11000, "number_of_characters": 505993, "number_texts_intersect_with_train": null, "min_text_length": 4, "average_text_length": 45.99936363636364, "max_text_length": 131, "unique_text": 10993, "unique_labels": 2, "labels": { "0": { "count": 7659 }, "1": { "count": 3341 } } } } ``` </details> --- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*
Synthyra/StringDBSeqsv12
Synthyra
2024-12-05T20:24:48Z
32
0
[ "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-05T05:40:36Z
0
--- dataset_info: features: - name: id dtype: string - name: sequence dtype: string splits: - name: train num_bytes: 23246112381 num_examples: 59309604 download_size: 22113807143 dataset_size: 23246112381 configs: - config_name: default data_files: - split: train path: data/train-* --- All the IDs and sequences in StringDB version 12 https://string-db.org/cgi/download
beyondgravityresearch/nlp_zh_dazhongdianping
beyondgravityresearch
2025-01-16T03:15:38Z
15
0
[ "license:apache-2.0", "region:us" ]
[]
2025-01-16T03:15:38Z
0
--- license: apache-2.0 ---
jiuyal2/so100_marker_new_camera_pose_new
jiuyal2
2025-06-09T05:49:52Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100" ]
[ "robotics" ]
2025-06-09T05:16:09Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 23, "total_frames": 6047, "total_tasks": 1, "total_videos": 46, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:23" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.so100": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.iphone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
ayushsi42/reward-bench-mistral-7b-sft-beta-comprehensive
ayushsi42
2025-06-23T21:03:14Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-23T21:02:57Z
0
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: chosen_model dtype: string - name: rejected dtype: string - name: rejected_model dtype: string - name: subset dtype: string - name: id dtype: int64 - name: comprehensive_chosen_log_likelihood dtype: float64 - name: comprehensive_rejected_log_likelihood dtype: float64 - name: comprehensive_chosen_perplexity dtype: float64 - name: comprehensive_rejected_perplexity dtype: float64 - name: comprehensive_chosen_yes_prob dtype: float64 - name: comprehensive_rejected_yes_prob dtype: float64 - name: comprehensive_chosen_binary_confidence dtype: float64 - name: comprehensive_rejected_binary_confidence dtype: float64 - name: comprehensive_chosen_log_odds dtype: float64 - name: comprehensive_rejected_log_odds dtype: float64 - name: comprehensive_chosen_stability dtype: float64 - name: comprehensive_rejected_stability dtype: float64 - name: comprehensive_chosen_math_ensemble dtype: float64 - name: comprehensive_rejected_math_ensemble dtype: float64 - name: comprehensive_chosen_confidence_ensemble dtype: float64 - name: comprehensive_rejected_confidence_ensemble dtype: float64 - name: comprehensive_chosen_stability_weighted dtype: float64 - name: comprehensive_rejected_stability_weighted dtype: float64 - name: comprehensive_chosen_comprehensive dtype: float64 - name: comprehensive_rejected_comprehensive dtype: float64 splits: - name: mt_bench_med num_bytes: 133896 num_examples: 45 - name: math_prm num_bytes: 942892 num_examples: 447 - name: mt_bench_hard num_bytes: 101198 num_examples: 45 - name: refusals_dangerous num_bytes: 290382 num_examples: 100 - name: llmbar_adver_manual num_bytes: 84858 num_examples: 46 - name: alpacaeval_length num_bytes: 3197147 num_examples: 805 - name: alpacaeval_hard num_bytes: 1716529 num_examples: 805 - name: hep_rust num_bytes: 198394 num_examples: 164 - name: hep_python num_bytes: 165585 num_examples: 164 - name: hep_cpp num_bytes: 192449 num_examples: 164 - name: llmbar_adver_GPTOut num_bytes: 38924 num_examples: 47 - name: llmbar_natural num_bytes: 104490 num_examples: 100 - name: xstest_should_refuse num_bytes: 260956 num_examples: 154 - name: hep_java num_bytes: 225956 num_examples: 164 - name: mt_bench_easy num_bytes: 98377 num_examples: 28 - name: alpacaeval_easy num_bytes: 2285248 num_examples: 805 - name: refusals_offensive num_bytes: 188598 num_examples: 100 - name: donotanswer num_bytes: 312964 num_examples: 136 - name: xstest_should_respond num_bytes: 357610 num_examples: 250 - name: llmbar_adver_GPTInst num_bytes: 223831 num_examples: 92 - name: llmbar_adver_neighbor num_bytes: 150322 num_examples: 134 - name: hep_go num_bytes: 202997 num_examples: 164 - name: hep_js num_bytes: 183120 num_examples: 164 download_size: 6979577 dataset_size: 11656723 configs: - config_name: default data_files: - split: mt_bench_med path: data/mt_bench_med-* - split: math_prm path: data/math_prm-* - split: mt_bench_hard path: data/mt_bench_hard-* - split: refusals_dangerous path: data/refusals_dangerous-* - split: llmbar_adver_manual path: data/llmbar_adver_manual-* - split: alpacaeval_length path: data/alpacaeval_length-* - split: alpacaeval_hard path: data/alpacaeval_hard-* - split: hep_rust path: data/hep_rust-* - split: hep_python path: data/hep_python-* - split: hep_cpp path: data/hep_cpp-* - split: llmbar_adver_GPTOut path: data/llmbar_adver_GPTOut-* - split: llmbar_natural path: data/llmbar_natural-* - split: xstest_should_refuse path: data/xstest_should_refuse-* - split: hep_java path: data/hep_java-* - split: mt_bench_easy path: data/mt_bench_easy-* - split: alpacaeval_easy path: data/alpacaeval_easy-* - split: refusals_offensive path: data/refusals_offensive-* - split: donotanswer path: data/donotanswer-* - split: xstest_should_respond path: data/xstest_should_respond-* - split: llmbar_adver_GPTInst path: data/llmbar_adver_GPTInst-* - split: llmbar_adver_neighbor path: data/llmbar_adver_neighbor-* - split: hep_go path: data/hep_go-* - split: hep_js path: data/hep_js-* ---
orionweller/c4-text
orionweller
2024-10-31T15:45:11Z
29
0
[ "size_categories:n<1K", "format:webdataset", "modality:text", "library:datasets", "library:webdataset", "library:mlcroissant", "region:us" ]
[]
2024-10-31T15:20:56Z
0
--- dataset_info: - config_name: c4 features: - name: text dtype: string - name: id dtype: string splits: - name: train num_examples: 8596372 - config_name: msmarco features: - name: text dtype: string - name: id dtype: string splits: - name: train num_examples: 8596372 configs: - config_name: c4 data_files: - split: train path: c4/*.jsonl.tar.gz - config_name: msmarco data_files: - split: train path: msmarco/*.jsonl.tar.gz --- This dataset contains two configurations: c4 and msmarco, both stored in gz format
pclucas14/narrative_qa_rag_128_32overlap_12_30
pclucas14
2024-10-17T20:04:52Z
20
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-17T20:04:50Z
0
--- dataset_info: features: - name: text sequence: sequence: string - name: questions sequence: string - name: answers sequence: sequence: string - name: document_id dtype: string - name: split dtype: string splits: - name: train num_bytes: 14693624 num_examples: 53 download_size: 5712122 dataset_size: 14693624 configs: - config_name: default data_files: - split: train path: data/train-* ---
violetxi/NUMINA-V2-Clean-Blocks-9000_9500-0_500
violetxi
2024-11-30T18:55:51Z
13
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-30T05:23:58Z
0
--- dataset_info: features: - name: problem dtype: string - name: source dtype: string - name: is_correct dtype: bool - name: target_answer dtype: string - name: solution dtype: string - name: solution_steps dtype: string - name: attempts dtype: string - name: model_answer dtype: string splits: - name: train num_bytes: 2392376447 num_examples: 319344 download_size: 232342701 dataset_size: 2392376447 configs: - config_name: default data_files: - split: train path: data/train-* ---
cfpark00/toy-multistep-nn_20-na_20-nab_120-seed_0
cfpark00
2025-04-07T08:50:58Z
15
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-07T08:50:49Z
0
--- dataset_info: features: - name: prompts dtype: string - name: completions dtype: string - name: num_maskeds dtype: int64 - name: texts dtype: string splits: - name: train num_bytes: 28363436 num_examples: 262144 - name: test_rl num_bytes: 28304972 num_examples: 262144 - name: test num_bytes: 28343692 num_examples: 262144 download_size: 38309485 dataset_size: 85012100 configs: - config_name: default data_files: - split: train path: data/train-* - split: test_rl path: data/test_rl-* - split: test path: data/test-* ---
uzair921/SKILLSPAN_LLM_CONTEXT_3541_25
uzair921
2024-10-09T08:56:35Z
20
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-08T16:17:04Z
0
--- configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* dataset_info: features: - name: tokens sequence: string - name: ner_tags sequence: class_label: names: '0': O '1': B-Skill '2': I-Skill splits: - name: train num_bytes: 1058810 num_examples: 2075 - name: validation num_bytes: 715196 num_examples: 1397 - name: test num_bytes: 758463 num_examples: 1523 download_size: 0 dataset_size: 2532469 --- # Dataset Card for "SKILLSPAN_LLM_CONTEXT_3541_25" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
HovorunB/example_dataset
HovorunB
2025-06-14T19:06:21Z
0
0
[ "task_categories:robotics", "size_categories:n<1K", "modality:video", "library:datasets", "library:mlcroissant", "region:us", "phosphobot", "so100", "phospho-dk" ]
[ "robotics" ]
2025-06-14T19:06:18Z
0
--- tags: - phosphobot - so100 - phospho-dk task_categories: - robotics --- # example_dataset **This dataset was generated using a [phospho starter pack](https://robots.phospho.ai).** This dataset contains a series of episodes recorded with a robot and multiple cameras. It can be directly used to train a policy using imitation learning. It's compatible with LeRobot and RLDS.
DanOgh07/train_icl_sample
DanOgh07
2025-03-11T19:37:33Z
14
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-11T09:47:58Z
0
--- dataset_info: features: - name: input sequence: string - name: target dtype: string - name: input_ids sequence: int32 - name: attention_mask sequence: int8 - name: labels sequence: int64 splits: - name: train num_bytes: 104655883 num_examples: 1497 download_size: 1074376 dataset_size: 104655883 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_8665861c-1fc5-4a62-9195-7634e450401e
argilla-internal-testing
2024-10-21T16:26:40Z
19
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-21T16:26:39Z
0
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1454 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
artianand/bbq_deberta_v3_large_race_custom_loss_custom_dataset_bbq
artianand
2025-04-15T14:13:41Z
8
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-12T12:36:06Z
0
--- dataset_info: features: - name: category dtype: string - name: example_id dtype: int64 - name: question_index dtype: int64 - name: question_polarity dtype: string - name: context_condition dtype: string - name: context dtype: string - name: question dtype: string - name: ans0 dtype: string - name: ans1 dtype: string - name: ans2 dtype: string - name: answer_info struct: - name: ans0 sequence: string - name: ans1 sequence: string - name: ans2 sequence: string - name: answer_label dtype: int64 - name: target_label dtype: int64 - name: additional_metadata struct: - name: corr_ans_aligns_race dtype: string - name: corr_ans_aligns_var2 dtype: string - name: full_cond dtype: string - name: known_stereotyped_groups dtype: string - name: known_stereotyped_race sequence: string - name: known_stereotyped_var2 dtype: string - name: label_type dtype: string - name: relevant_social_values dtype: string - name: source dtype: string - name: stereotyped_groups sequence: string - name: subcategory dtype: string - name: version dtype: string - name: predictions dtype: int64 splits: - name: train num_bytes: 46744528 num_examples: 58492 download_size: 2560656 dataset_size: 46744528 configs: - config_name: default data_files: - split: train path: data/train-* ---
infinite-dataset-hub/ElClasicoLiveSentiment
infinite-dataset-hub
2025-01-09T16:03:52Z
12
0
[ "license:mit", "size_categories:n<1K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "infinite-dataset-hub", "synthetic" ]
[]
2025-01-09T16:03:50Z
0
--- license: mit tags: - infinite-dataset-hub - synthetic --- # ElClasicoLiveSentiment tags: Classification, Spanish, Football Comments _Note: This is an AI-generated dataset so its content may be inaccurate or false_ **Dataset Description:** The 'ElClasicoLiveSentiment' dataset contains real-time comments from live broadcasts of the El Clasico football matches. Each comment has been translated into Spanish and analyzed for sentiment. The dataset is structured to facilitate sentiment classification, focusing on expressions related to football events like passes, goals, and sprints. Comments have been anonymized and tagged with either positive, neutral, or negative sentiment labels. The CSV file contains a selection of comments along with their respective sentiment labels, formatted for easy consumption by machine learning practitioners interested in analyzing the emotional tone of live football commentary. **CSV Content Preview:** ``` CommentID,CommentText,Label 1,"¡Esto es una asombrosa jugada! El pase es inimaginable.",Positive 2,"Estoy muy confundido con la situación actual en el campo.",Neutral 3,"¡El gol fue abominable, solo noche sin fútbol!",Negative 4,"Parece que el equipo X tiene una increíble sensibilidad en los pases.",Positive 5,"¿Cuál fue el movimiento que llevó al segundo gol? Gracioso!",Positive ``` **Source of the data:** The dataset was generated using the [Infinite Dataset Hub](https://huggingface.co/spaces/infinite-dataset-hub/infinite-dataset-hub) and microsoft/Phi-3-mini-4k-instruct using the query 'dataset of football game live comments in spanish for el clasico, positive/neutral/negative sentiment, quoted csv, comments on passes, goals, sprints etc.': - **Dataset Generation Page**: https://huggingface.co/spaces/infinite-dataset-hub/infinite-dataset-hub?q=dataset+of+football+game+live+comments+in+spanish+for+el+clasico,+positive/neutral/negative+sentiment,+quoted+csv,+comments+on+passes,+goals,+sprints+etc.&dataset=ElClasicoLiveSentiment&tags=Classification,+Spanish,+Football+Comments - **Model**: https://huggingface.co/microsoft/Phi-3-mini-4k-instruct - **More Datasets**: https://huggingface.co/datasets?other=infinite-dataset-hub
MexIvanov/RAG-v1-ruen
MexIvanov
2024-11-11T07:32:40Z
82
1
[ "language:en", "language:ru", "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "rag", "synthetic", "code" ]
[]
2024-11-11T07:21:12Z
0
--- license: apache-2.0 language: - en - ru tags: - rag - synthetic - code --- A version of the glaiveai/RAG-v1 dataset extended with machine translation to Russian language for multilingual retrieval-augmented generation tasks. Released under the same license as the original dataset, provided as is with research intent (but not limited), use/read at your own risk.
ahmedheakl/plotly_pie_chart
ahmedheakl
2025-02-03T18:00:11Z
22
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "datadreamer", "datadreamer-0.35.0", "synthetic", "gpt-4o" ]
[]
2025-02-03T17:59:32Z
0
--- dataset_info: features: - name: metadata dtype: string - name: topic dtype: string - name: data dtype: string - name: code dtype: string - name: image dtype: image splits: - name: train num_bytes: 312700.0 num_examples: 4 download_size: 305028 dataset_size: 312700.0 configs: - config_name: default data_files: - split: train path: data/train-* library_name: datadreamer size_categories: - n<1K tags: - datadreamer - datadreamer-0.35.0 - synthetic - gpt-4o - gpt-4o - gpt-4o --- # Dataset Card [Add more information here](https://huggingface.co/datasets/templates/dataset-card-example) --- This dataset was produced with [DataDreamer 🤖💤](https://datadreamer.dev). The synthetic dataset card can be found [here](datadreamer.json).
aklywtx/corpus_vi_sop
aklywtx
2024-12-07T14:25:34Z
14
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-07T14:20:20Z
0
--- dataset_info: features: - name: sentence1 dtype: string - name: sentence2 dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 2660889947 num_examples: 8222483 download_size: 1119754151 dataset_size: 2660889947 configs: - config_name: default data_files: - split: train path: data/train-* ---
underctrl/handcamera_single_orange
underctrl
2024-12-10T06:09:31Z
84
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2024-12-10T03:36:32Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.0", "robot_type": "unknown", "total_episodes": 80, "total_frames": 20566, "total_tasks": 1, "total_videos": 240, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:80" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": { "motors": [ "motor_0", "motor_1", "motor_2", "motor_3", "motor_4", "motor_5" ] } }, "observation.images.android": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channel" ], "video_info": { "video.fps": 30.0, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.webcam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channel" ], "video_info": { "video.fps": 30.0, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.handcam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channel" ], "video_info": { "video.fps": 30.0, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "action": { "dtype": "float32", "shape": [ 6 ], "names": { "motors": [ "motor_0", "motor_1", "motor_2", "motor_3", "motor_4", "motor_5" ] } }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "next.done": { "dtype": "bool", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
mlabonne/orca-agentinstruct-1M-v1-cleaned
mlabonne
2025-01-25T16:01:27Z
205
59
[ "task_categories:question-answering", "language:en", "license:cdla-permissive-2.0", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "question-answering" ]
2024-11-17T18:09:55Z
0
--- language: - en license: cdla-permissive-2.0 size_categories: - 1M<n<10M task_categories: - question-answering dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string - name: split dtype: string splits: - name: train num_bytes: 4638101451 num_examples: 1046410 download_size: 2178041194 dataset_size: 4638101451 configs: - config_name: default data_files: - split: train path: data/train-* --- # 🐋 Orca-AgentInstruct-1M-v1-cleaned This is a cleaned version of the [microsoft/orca-agentinstruct-1M-v1](https://huggingface.co/datasets/microsoft/orca-agentinstruct-1M-v1) dataset released by Microsoft. > orca-agentinstruct-1M-v1 is a fully synthetic dataset using only raw text publicly available on the web as seed data. It is a subset of the full AgentInstruct dataset (~25M samples) that created Orca-3-Mistral. Compared to Mistral 7B Instruct, the authors claim 40% improvement on AGIEval, 19% improvement on MMLU, 54% improvement on GSM8K, 38% improvement on BBH and 45% improvement on AlpacaEval. Here's what I changed: 1. Splits are unified into one, with a new "split" column 2. Strings were converted into lists of dicts to ensure compatibility with most frameworks 3. Empty system prompts were removed so you don't get weird errors Data categories in the dataset: - creative_content - text_modification - struct2text_flow - rc - rag - text_extraction - mcq - follow_up - analytical_reasoning - fermi - fs_cot_flow - code_ - brain_teaser - text_classification - open_domain_q
ketchup123/TeleEval_ShareGPT
ketchup123
2025-03-18T17:00:49Z
15
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-18T17:00:43Z
0
--- dataset_info: features: - name: conversations list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 260048447 num_examples: 600000 download_size: 99217737 dataset_size: 260048447 configs: - config_name: default data_files: - split: train path: data/train-* ---
mlfoundations-dev/openthoughts2_science_1k
mlfoundations-dev
2025-05-06T05:34:31Z
0
0
[ "region:us" ]
[]
2025-05-06T05:34:30Z
0
--- dataset_info: features: - name: conversations list: - name: from dtype: string - name: value dtype: string - name: _domain dtype: string - name: system dtype: string - name: problem dtype: string - name: reasoning dtype: string - name: deepseek_solution dtype: string - name: question dtype: string - name: source dtype: string - name: id dtype: int64 - name: extracted_instruction dtype: string splits: - name: train num_bytes: 12487276.660572821 num_examples: 1000 download_size: 5577461 dataset_size: 12487276.660572821 configs: - config_name: default data_files: - split: train path: data/train-* ---
Procit004/sentiment
Procit004
2025-03-24T06:59:13Z
7
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-24T06:59:06Z
0
--- dataset_info: features: - name: full_text dtype: string - name: text_translation dtype: string - name: created_at dtype: string - name: screen_name dtype: string - name: description dtype: string - name: desc_translation dtype: string - name: weekofyear dtype: float64 - name: weekday dtype: float64 - name: day dtype: float64 - name: month dtype: float64 - name: year dtype: float64 - name: location dtype: string - name: point_info dtype: string - name: point dtype: string - name: latitude dtype: float64 - name: longitude dtype: float64 - name: altitude dtype: float64 - name: province dtype: string - name: hisco_standard dtype: string - name: hisco_code sequence: 'null' - name: industry dtype: bool - name: sentiment_pattern dtype: float64 - name: subjective_pattern dtype: float64 splits: - name: train num_bytes: 18601833 num_examples: 27234 download_size: 8091136 dataset_size: 18601833 configs: - config_name: default data_files: - split: train path: data/train-* ---
gm168/GDPR_norms_extraction
gm168
2024-10-09T03:00:41Z
25
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-04T00:39:58Z
0
--- dataset_info: features: - name: gdpr_article_number dtype: string - name: cross_reference dtype: string - name: gdpr_article dtype: string - name: norms dtype: string - name: input dtype: string - name: text dtype: string splits: - name: train num_bytes: 546596.5034965035 num_examples: 100 - name: test num_bytes: 235036.4965034965 num_examples: 43 download_size: 195392 dataset_size: 781633.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
tenfoldpaper/pick-gummy4
tenfoldpaper
2025-06-14T16:38:00Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-06-14T16:37:54Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so101_follower", "total_episodes": 4, "total_frames": 1778, "total_tasks": 1, "total_videos": 8, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:4" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "shoulder_pan.pos", "shoulder_lift.pos", "elbow_flex.pos", "wrist_flex.pos", "wrist_roll.pos", "gripper.pos" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "shoulder_pan.pos", "shoulder_lift.pos", "elbow_flex.pos", "wrist_flex.pos", "wrist_roll.pos", "gripper.pos" ] }, "observation.images.front": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.side": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
Self-GRIT/open-hermes-2.5-sft-active-retrieval-instruct-linq-wikiv2-prefix-suffix
Self-GRIT
2024-10-02T08:20:13Z
19
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-02T08:19:50Z
0
--- dataset_info: features: - name: instruction dtype: string - name: output dtype: string - name: id dtype: int64 splits: - name: train num_bytes: 827209361 num_examples: 300430 download_size: 428840782 dataset_size: 827209361 configs: - config_name: default data_files: - split: train path: data/train-* ---
kothasuhas/gold-37M-1.5M-gens-4-30
kothasuhas
2025-05-01T11:47:44Z
0
0
[ "region:us" ]
[]
2025-05-01T11:44:17Z
0
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 3575804917 num_examples: 1500000 - name: validation num_bytes: 2451760 num_examples: 1000 download_size: 2098681302 dataset_size: 3578256677 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
smanni/train_so100_pick_place_double_purple_object
smanni
2025-05-28T12:42:41Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-05-28T12:42:26Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 50, "total_frames": 29850, "total_tasks": 1, "total_videos": 50, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:50" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.intel_realsense": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
c-ho/2025-05-16_processed_dev_df_with_linsearch_num
c-ho
2025-05-16T17:58:28Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-16T14:48:34Z
0
--- dataset_info: features: - name: filename dtype: string - name: text dtype: string - name: '@id' dtype: string - name: sameAs dtype: string - name: linsearch dtype: string - name: contributor dtype: string - name: identifier dtype: string - name: publisher dtype: string - name: subject dtype: string - name: title dtype: string - name: abstract dtype: string - name: issued dtype: string - name: language dtype: string - name: license dtype: string - name: dcterms:subject dtype: string - name: all@id dtype: string - name: all_sameAs dtype: string - name: linsearch_num dtype: int64 splits: - name: train num_bytes: 166022611 num_examples: 19359 download_size: 0 dataset_size: 166022611 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "2025-05-16_processed_dev_df_with_linsearch_num" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
tmpmodelsave/llama3_70bcorr_type2_selftype1_beta01_500tmp10
tmpmodelsave
2025-01-20T15:56:53Z
15
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-20T15:56:31Z
0
--- dataset_info: features: - name: idx dtype: int64 - name: gt dtype: string - name: prompt dtype: string - name: level dtype: string - name: type dtype: string - name: solution dtype: string - name: my_solu sequence: string - name: pred sequence: string - name: rewards sequence: bool splits: - name: train num_bytes: 16363291 num_examples: 5000 download_size: 5962535 dataset_size: 16363291 configs: - config_name: default data_files: - split: train path: data/train-* ---
AyaKhaled/test_csv_data3
AyaKhaled
2025-03-30T10:24:46Z
52
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-30T10:15:35Z
0
--- dataset_info: features: - name: image_path dtype: string - name: caption dtype: string - name: question dtype: string - name: image dtype: image splits: - name: train num_bytes: 100028841.0 num_examples: 999 download_size: 99402588 dataset_size: 100028841.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
wyh1128/US-1M
wyh1128
2025-05-23T09:29:35Z
299
0
[ "task_categories:image-feature-extraction", "language:en", "license:apache-2.0", "size_categories:n<1K", "format:imagefolder", "modality:image", "library:datasets", "library:mlcroissant", "region:us", "medical" ]
[ "image-feature-extraction" ]
2025-05-15T07:49:55Z
0
--- license: apache-2.0 task_categories: - image-feature-extraction language: - en tags: - medical size_categories: - n>1T --- # Dataset Card for Dataset Name US-1M establishes a new benchmark in medical imaging research, comprising 1.28 million rigorously annotated ultrasound images with precise anatomical structure delineations and comprehensive demographic metadata This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1). ## Uses ## Dataset Structure ![image/png](https://cdn-uploads.huggingface.co/production/uploads/67b3fadbad717fe02e17401b/4wy_TmsDnEIZSXjHK2bgm.png)
tlpss/roboflow-garlic
tlpss
2024-12-16T19:27:47Z
26
0
[ "size_categories:1K<n<10K", "format:imagefolder", "modality:image", "library:datasets", "library:mlcroissant", "region:us", "keypoint-detection" ]
[]
2024-12-16T19:20:16Z
0
--- size_categories: - n<1K tags: - keypoint-detection --- # Garlic Keypoint Detection dataset This dataset contains 1000 images of a single garlic clove in a pressumably industrial setting. The annotations are coco-formatted and are composed of a bounding box and 2 keypoints: head and tail. The dataset was taken from https://universe.roboflow.com/gesture-recognition-dsn2n/garlic_keypoint/dataset/1. Refer to the original repo for licensing questions. The annotations json files were slightly modified (formatting, image base directory,..) w.r.t. the original files.
ZixuanKe/flare_finqa_sup_sample_from_policy_v1.1_dpo_train_chunk_18
ZixuanKe
2024-11-23T21:36:43Z
18
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-23T21:36:41Z
0
--- dataset_info: features: - name: prompt dtype: string - name: rejected dtype: string - name: chosen dtype: string splits: - name: train num_bytes: 5389539 num_examples: 1096 download_size: 571451 dataset_size: 5389539 configs: - config_name: default data_files: - split: train path: data/train-* ---
test-gen/code_livecodebench_qwen2.5-7b_t1.0_n8_tests_livecodebench_qwen3-4b-easy-unique_t0.0_n1
test-gen
2025-05-21T17:19:15Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-21T17:19:12Z
0
--- dataset_info: features: - name: question_title dtype: string - name: question_content dtype: string - name: question_id dtype: string - name: contest_id dtype: string - name: test_id dtype: int64 - name: contest_date dtype: timestamp[us] - name: starter_code dtype: string - name: function_name dtype: string - name: difficulty dtype: string - name: test dtype: string - name: generated_code sequence: string - name: gt_rewards sequence: float64 - name: rewards sequence: float64 - name: verification_info struct: - name: language dtype: string - name: test_cases sequence: string splits: - name: test num_bytes: 2199516 num_examples: 182 download_size: 874946 dataset_size: 2199516 configs: - config_name: default data_files: - split: test path: data/test-* ---
neelabh17/new_news_exploded_prompt_n_5_d_perc_60_num_gen_10_Qwen2.5-7B-Instruct
neelabh17
2025-05-15T15:12:35Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-15T15:12:34Z
0
--- dataset_info: features: - name: id dtype: string - name: name dtype: string - name: topic dtype: string - name: news dtype: string - name: category dtype: string - name: question dtype: string - name: option sequence: string - name: prompt dtype: string - name: response_0 dtype: string - name: answer_0 dtype: string - name: correct_0 dtype: int64 - name: response_1 dtype: string - name: answer_1 dtype: string - name: correct_1 dtype: int64 - name: response_2 dtype: string - name: answer_2 dtype: string - name: correct_2 dtype: int64 - name: response_3 dtype: string - name: answer_3 dtype: string - name: correct_3 dtype: int64 - name: response_4 dtype: string - name: answer_4 dtype: string - name: correct_4 dtype: int64 - name: response_5 dtype: string - name: answer_5 dtype: string - name: correct_5 dtype: int64 - name: response_6 dtype: string - name: answer_6 dtype: string - name: correct_6 dtype: int64 - name: response_7 dtype: string - name: answer_7 dtype: string - name: correct_7 dtype: int64 - name: response_8 dtype: string - name: answer_8 dtype: string - name: correct_8 dtype: int64 - name: response_9 dtype: string - name: answer_9 dtype: string - name: correct_9 dtype: int64 splits: - name: train num_bytes: 2770900 num_examples: 375 download_size: 1027157 dataset_size: 2770900 configs: - config_name: default data_files: - split: train path: data/train-* ---
HumanoidTeam/demo-maltesers
HumanoidTeam
2024-12-19T22:17:10Z
28
0
[ "task_categories:robotics", "region:us", "LeRobot" ]
[ "robotics" ]
2024-12-19T22:15:33Z
0
--- task_categories: - robotics tags: - LeRobot --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
mamung/reddit_dataset_192
mamung
2025-02-28T07:58:02Z
9
0
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:question-answering", "task_categories:summarization", "task_categories:text-generation", "task_ids:sentiment-analysis", "task_ids:topic-classification", "task_ids:named-entity-recognition", "task_ids:language-modeling", "task_ids:text-scoring", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "task_ids:extractive-qa", "task_ids:news-articles-summarization", "multilinguality:multilingual", "source_datasets:original", "license:mit", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification", "token-classification", "question-answering", "summarization", "text-generation" ]
2025-02-26T20:54:42Z
0
--- license: mit multilinguality: - multilingual source_datasets: - original task_categories: - text-classification - token-classification - question-answering - summarization - text-generation task_ids: - sentiment-analysis - topic-classification - named-entity-recognition - language-modeling - text-scoring - multi-class-classification - multi-label-classification - extractive-qa - news-articles-summarization --- # Bittensor Subnet 13 Reddit Dataset <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> ## Dataset Description - **Repository:** mamung/reddit_dataset_192 - **Subnet:** Bittensor Subnet 13 - **Miner Hotkey:** 5DtfQfETXqrW9JAEBgqZcidaHaxogXgWSMrQ8Qotzth9GCsr ### Dataset Summary This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed Reddit data. The data is continuously updated by network miners, providing a real-time stream of Reddit content for various analytical and machine learning tasks. For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe). ### Supported Tasks The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs. For example: - Sentiment Analysis - Topic Modeling - Community Analysis - Content Categorization ### Languages Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation. ## Dataset Structure ### Data Instances Each instance represents a single Reddit post or comment with the following fields: ### Data Fields - `text` (string): The main content of the Reddit post or comment. - `label` (string): Sentiment or topic category of the content. - `dataType` (string): Indicates whether the entry is a post or a comment. - `communityName` (string): The name of the subreddit where the content was posted. - `datetime` (string): The date when the content was posted or commented. - `username_encoded` (string): An encoded version of the username to maintain user privacy. - `url_encoded` (string): An encoded version of any URLs included in the content. ### Data Splits This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp. ## Dataset Creation ### Source Data Data is collected from public posts and comments on Reddit, adhering to the platform's terms of service and API usage guidelines. ### Personal and Sensitive Information All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information. ## Considerations for Using the Data ### Social Impact and Biases Users should be aware of potential biases inherent in Reddit data, including demographic and content biases. This dataset reflects the content and opinions expressed on Reddit and should not be considered a representative sample of the general population. ### Limitations - Data quality may vary due to the nature of media sources. - The dataset may contain noise, spam, or irrelevant content typical of social media platforms. - Temporal biases may exist due to real-time collection methods. - The dataset is limited to public subreddits and does not include private or restricted communities. ## Additional Information ### Licensing Information The dataset is released under the MIT license. The use of this dataset is also subject to Reddit Terms of Use. ### Citation Information If you use this dataset in your research, please cite it as follows: ``` @misc{mamung2025datauniversereddit_dataset_192, title={The Data Universe Datasets: The finest collection of social media data the web has to offer}, author={mamung}, year={2025}, url={https://huggingface.co/datasets/mamung/reddit_dataset_192}, } ``` ### Contributions To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms. ## Dataset Statistics [This section is automatically updated] - **Total Instances:** 17425 - **Date Range:** 2024-11-08T00:00:00Z to 2025-02-28T00:00:00Z - **Last Updated:** 2025-02-28T07:58:01Z ### Data Distribution - Posts: 24.25% - Comments: 75.75% ### Top 10 Subreddits For full statistics, please refer to the `stats.json` file in the repository. | Rank | Topic | Total Count | Percentage | |------|-------|-------------|-------------| | 1 | r/teenagers | 2361 | 13.55% | | 2 | r/NoStupidQuestions | 2295 | 13.17% | | 3 | r/Advice | 2205 | 12.65% | | 4 | r/Monopoly_GO | 1935 | 11.10% | | 5 | r/dirtyr4r | 1709 | 9.81% | | 6 | r/AITAH | 1629 | 9.35% | | 7 | r/videogames | 1365 | 7.83% | | 8 | r/AmIOverreacting | 1320 | 7.58% | | 9 | r/PcBuild | 1296 | 7.44% | | 10 | r/moviecritic | 1033 | 5.93% | ## Update History | Date | New Instances | Total Instances | |------|---------------|-----------------| | 2025-02-26T20:54:44Z | 198 | 198 | | 2025-02-27T14:34:13Z | 6080 | 6278 | | 2025-02-28T07:58:01Z | 11147 | 17425 |
fatlonder/i24
fatlonder
2024-11-22T03:02:49Z
49
0
[ "license:other", "size_categories:1M<n<10M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-21T23:08:22Z
0
--- license: other license_name: i24 license_link: LICENSE --- Data use agreement By acquiring and using the I-24 MOTION data, you agree to the following data use agreement (updated 19 September 2023). You are free to use the data in academic and commercial work. The dataset contains anonymous trajectories. Any activities to re-identify individuals in the dataset or activities that may cause harm to individuals in the dataset are prohibited. When you use I-24 MOTION data in published academic work, you are required to include the following citation contents. This allows us to aggregate statistics on the data use in publications: Gloudemans, D., Wang, Y., Ji, J., Zachar, G., Barbour, W., Hall, E., Cebelak, M., Smith, L. and Work, D.B., 2023. I-24 MOTION: An instrument for freeway traffic science. Transportation Research Part C: Emerging Technologies, 155, p.104311. The bibtex version of the reference is: @article{gloudemans202324, title={I-24 MOTION: An instrument for freeway traffic science}, author={Gloudemans, Derek and Wang, Yanbing and Ji, Junyi and Zachar, Gergely and Barbour, William and Hall, Eric and Cebelak, Meredith and Smith, Lee and Work, Daniel B}, journal={Transportation Research Part C: Emerging Technologies}, volume={155}, pages={104311}, year={2023}, publisher={Elsevier} } You are free to create and share derivative products as long as you maintain the terms above. The data is provided “As is.” We make no other warranties, express or implied, and hereby disclaim all implied warranties, including any warranty of merchantability and warranty of fitness for a particular purpose.
WPRM/preference_data_llama_factory_corrected_format_text_only
WPRM
2025-04-21T07:18:25Z
27
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-21T07:12:16Z
0
--- dataset_info: features: - name: conversations list: - name: from dtype: string - name: value dtype: string - name: chosen struct: - name: from dtype: string - name: value dtype: string - name: rejected struct: - name: from dtype: string - name: value dtype: string - name: images sequence: image - name: task_id dtype: int32 - name: step_id dtype: int32 - name: source_name dtype: string splits: - name: train num_bytes: 9760903394.289 num_examples: 30921 download_size: 2957818091 dataset_size: 9760903394.289 configs: - config_name: default data_files: - split: train path: data/train-* ---
kornwtp/sts17-crosslingual-mya-sts
kornwtp
2025-03-09T15:06:19Z
21
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-03T06:06:00Z
0
--- dataset_info: features: - name: sentence1 dtype: string - name: sentence2 dtype: string - name: score dtype: float64 splits: - name: test num_bytes: 50241.824 num_examples: 248 download_size: 22364 dataset_size: 50241.824 configs: - config_name: default data_files: - split: test path: data/test-* ---
BIT-MJY/test_tube_pick
BIT-MJY
2025-06-16T12:55:45Z
32
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-01T08:32:22Z
0
--- dataset_info: features: - name: image dtype: string - name: question dtype: string - name: answer dtype: string - name: source dtype: string splits: - name: train num_bytes: 332501.80144879816 num_examples: 2733 - name: val num_bytes: 18492.599275600922 num_examples: 152 - name: test num_bytes: 18492.599275600922 num_examples: 152 download_size: 31623 dataset_size: 369487.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: val path: data/val-* - split: test path: data/test-* ---
Yiheyihe/galaxea-r1-shelf-debug
Yiheyihe
2025-02-26T21:04:35Z
37
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-02-14T12:11:17Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.0", "robot_type": null, "total_episodes": 1, "total_frames": 508, "total_tasks": 1, "total_videos": 3, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:1" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "observation.state": { "dtype": "float32", "shape": [ 21 ] }, "action": { "dtype": "float32", "shape": [ 21 ] }, "observation.images.head": { "dtype": "video", "shape": [ 3, 94, 168 ], "names": [ "channels", "height", "width" ], "info": { "video.fps": 30.0, "video.height": 94, "video.width": 168, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.left_wrist": { "dtype": "video", "shape": [ 3, 94, 168 ], "names": [ "channels", "height", "width" ], "info": { "video.fps": 30.0, "video.height": 94, "video.width": 168, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.right_wrist": { "dtype": "video", "shape": [ 3, 94, 168 ], "names": [ "channels", "height", "width" ], "info": { "video.fps": 30.0, "video.height": 94, "video.width": 168, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
binyoonan/common
binyoonan
2025-04-13T02:14:07Z
16
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-13T02:09:36Z
0
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string splits: - name: train num_bytes: 11330258 num_examples: 25166 download_size: 4733278 dataset_size: 11330258 configs: - config_name: default data_files: - split: train path: data/train-* ---
MayAlsofyani/balanced_manybugs_few1
MayAlsofyani
2025-01-28T20:02:37Z
18
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-28T20:02:36Z
0
--- dataset_info: features: - name: text dtype: string - name: label dtype: int64 - name: response dtype: string splits: - name: train num_bytes: 172253 num_examples: 42 download_size: 76897 dataset_size: 172253 configs: - config_name: default data_files: - split: train path: data/train-* ---
vGassen/EU-Parliament-Minutes-Dutch
vGassen
2025-06-17T14:14:27Z
0
0
[ "license:cc-by-4.0", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-17T13:51:31Z
0
--- license: cc-by-4.0 configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: URL dtype: string - name: text dtype: string - name: source dtype: string splits: - name: train num_bytes: 7219277 num_examples: 324 download_size: 2389564 dataset_size: 7219277 --- Dutch-European-Parliament-Minutes This dataset contains cleaned Dutch minutes from the plenary sessions of the European Parliament. The texts are scraped directly from the official website using scraper.py in this repository. Dataset Structure Each record includes: URL – the original source link to the XML file. text – the cleaned minutes text with procedural content removed. source – a fixed string identifying the data as “European Parliament Minutes”. Example: { "URL": "https://www.europarl.europa.eu/doceo/document/PV-10-2025-06-16_NL.xml", "text": "De vergadering wordt om 14.00 uur geopend. ...", "source": "European Parliament Minutes" } How to Use Load the dataset directly from the Hugging Face Hub: from datasets import load_dataset dataset = load_dataset("YOUR_USERNAME/Dutch-European-Parliament-Minutes", split="train") You can then iterate over dataset or convert it to other formats supported by the datasets library. Source and Collection The scraper starts from a given “table of contents” page (e.g. PV‑10‑2025‑06‑16‑TOC_NL.html) and follows the “Vorige” link to work backwards through parliamentary terms, currently stopping at term 6. Each corresponding XML minutes file is downloaded, cleaned, and converted into the dataset format. The script excludes the “PRESENTIELIJST” section and other procedural notes so that each record focuses on the actual debate text. License The compiled dataset is released under CC-BY‑4.0. According to the European Parliament website, older minutes use an equivalent open license (e.g. CC-BY‑SA or another permissive license). Please verify individual documents if you have specific reuse requirements. When using this dataset, please credit “European Parliament” and, if applicable, link back to the Hugging Face dataset page.
Alok2304/Indian_Property_Law
Alok2304
2025-03-18T17:41:22Z
14
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-18T17:41:17Z
0
--- dataset_info: features: - name: conversations list: - name: from dtype: string - name: value dtype: string splits: - name: train num_bytes: 108550 num_examples: 500 download_size: 7341 dataset_size: 108550 configs: - config_name: default data_files: - split: train path: data/train-* ---
BarryFutureman/vpt_data_8xx_shard0110
BarryFutureman
2025-06-11T01:33:25Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-06-11T01:31:27Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": null, "total_episodes": 10, "total_frames": 54233, "total_tasks": 1, "total_videos": 0, "total_chunks": 1, "chunks_size": 1000, "fps": 20, "splits": { "train": "0:10" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "observation.image": { "dtype": "image", "shape": [ 3, 360, 640 ], "names": [ "channel", "height", "width" ] }, "action": { "dtype": "string", "shape": [ 1 ], "names": null }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
CodeSoft/BeatSaberLM-Dataset
CodeSoft
2025-04-23T23:30:08Z
16
0
[ "task_categories:question-answering", "language:en", "license:mit", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "beatsaber" ]
[ "question-answering" ]
2025-04-23T23:18:58Z
0
--- license: mit task_categories: - question-answering language: - en tags: - beatsaber pretty_name: BeatSaberLM size_categories: - n<1K --- # BeatSaberLM BeatSaberLM is a conversational QA dataset built for the virtual reality video game Beat Saber. It includes prompts and detailed completions derived from community experience, guides, and technical modding instructions. Data was auto-generated and manually filtered for quality, but some inaccuracies may still be present. ## Features - Covers gameplay, modding, difficulty levels, saber types, and more - Focused on PC and Quest platforms - Structured as prompt-completion pairs for language model fine-tuning or inference - Continuously expanding based on community input and updates to Beat Saber ## Usage BeatSaberLM is ideal for training or evaluating models on: - Beat Saber-specific virtual assistant tasks like modding, mapping, or gameplay ## Limitations - Dataset was filtered manually, but some answers may still be outdated or partially incorrect - Some answers may reflect opinions from the community or common practices rather than official sources ## Updates This dataset will be randomly updated. ## Licensing This dataset is released under the MIT License. ## How to Cite If you use this dataset in your research or projects, please cite it as follows: ```bibtex @misc{codesoft2025beatsaberlm, author = "CodeSoft", title = "BeatSaberLM Dataset", year = 2025, note = "https://huggingface.co/datasets/CodeSoft/BeatSaberLM-Dataset" } ``` --- For contributions or suggestions, reach out to me in the community tab.
GitBag/Qwen2.5-7B-tldr-val
GitBag
2025-04-10T12:15:30Z
8
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-10T06:43:12Z
0
--- dataset_info: features: - name: id dtype: string - name: subreddit dtype: string - name: title dtype: string - name: post dtype: string - name: summary dtype: string - name: query_token sequence: int64 - name: query dtype: string - name: reference_response dtype: string - name: reference_response_token sequence: int64 - name: reference_response_token_len dtype: int64 - name: query_reference_response dtype: string - name: query_reference_response_token sequence: int64 - name: query_reference_response_token_len dtype: int64 - name: response_0 dtype: string - name: response_0_rouge_1 dtype: float64 - name: response_0_rouge_2 dtype: float64 - name: response_0_rouge_L dtype: float64 - name: response_0_Qwen2.5-0.5B_logprobs dtype: float64 - name: response_0_Qwen2.5-1.5B_logprobs dtype: float64 - name: response_0_Qwen2.5-3B_logprobs dtype: float64 - name: response_0_Qwen2.5-7B_logprobs dtype: float64 - name: response_0_Qwen2.5-0.5B-Instruct_logprobs dtype: float64 - name: response_0_Qwen2.5-1.5B-Instruct_logprobs dtype: float64 - name: response_0_Qwen2.5-3B-Instruct_logprobs dtype: float64 - name: response_0_Qwen2.5-7B-Instruct_logprobs dtype: float64 - name: response_1 dtype: string - name: response_1_rouge_1 dtype: float64 - name: response_1_rouge_2 dtype: float64 - name: response_1_rouge_L dtype: float64 - name: response_1_Qwen2.5-0.5B_logprobs dtype: float64 - name: response_1_Qwen2.5-1.5B_logprobs dtype: float64 - name: response_1_Qwen2.5-3B_logprobs dtype: float64 - name: response_1_Qwen2.5-7B_logprobs dtype: float64 - name: response_1_Qwen2.5-0.5B-Instruct_logprobs dtype: float64 - name: response_1_Qwen2.5-1.5B-Instruct_logprobs dtype: float64 - name: response_1_Qwen2.5-3B-Instruct_logprobs dtype: float64 - name: response_1_Qwen2.5-7B-Instruct_logprobs dtype: float64 - name: response_2 dtype: string - name: response_2_rouge_1 dtype: float64 - name: response_2_rouge_2 dtype: float64 - name: response_2_rouge_L dtype: float64 - name: response_2_Qwen2.5-0.5B_logprobs dtype: float64 - name: response_2_Qwen2.5-1.5B_logprobs dtype: float64 - name: response_2_Qwen2.5-3B_logprobs dtype: float64 - name: response_2_Qwen2.5-7B_logprobs dtype: float64 - name: response_2_Qwen2.5-0.5B-Instruct_logprobs dtype: float64 - name: response_2_Qwen2.5-1.5B-Instruct_logprobs dtype: float64 - name: response_2_Qwen2.5-3B-Instruct_logprobs dtype: float64 - name: response_2_Qwen2.5-7B-Instruct_logprobs dtype: float64 - name: response_3 dtype: string - name: response_3_rouge_1 dtype: float64 - name: response_3_rouge_2 dtype: float64 - name: response_3_rouge_L dtype: float64 - name: response_3_Qwen2.5-0.5B_logprobs dtype: float64 - name: response_3_Qwen2.5-1.5B_logprobs dtype: float64 - name: response_3_Qwen2.5-3B_logprobs dtype: float64 - name: response_3_Qwen2.5-7B_logprobs dtype: float64 - name: response_3_Qwen2.5-0.5B-Instruct_logprobs dtype: float64 - name: response_3_Qwen2.5-1.5B-Instruct_logprobs dtype: float64 - name: response_3_Qwen2.5-3B-Instruct_logprobs dtype: float64 - name: response_3_Qwen2.5-7B-Instruct_logprobs dtype: float64 - name: response_4 dtype: string - name: response_4_rouge_1 dtype: float64 - name: response_4_rouge_2 dtype: float64 - name: response_4_rouge_L dtype: float64 - name: response_4_Qwen2.5-0.5B_logprobs dtype: float64 - name: response_4_Qwen2.5-1.5B_logprobs dtype: float64 - name: response_4_Qwen2.5-3B_logprobs dtype: float64 - name: response_4_Qwen2.5-7B_logprobs dtype: float64 - name: response_4_Qwen2.5-0.5B-Instruct_logprobs dtype: float64 - name: response_4_Qwen2.5-1.5B-Instruct_logprobs dtype: float64 - name: response_4_Qwen2.5-3B-Instruct_logprobs dtype: float64 - name: response_4_Qwen2.5-7B-Instruct_logprobs dtype: float64 splits: - name: validation num_bytes: 98096668 num_examples: 6447 download_size: 33846237 dataset_size: 98096668 configs: - config_name: default data_files: - split: validation path: data/validation-* ---
ZHIYII/successful_finite_inf_1000_all_parts
ZHIYII
2025-04-08T07:40:19Z
7
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-08T06:14:07Z
0
--- dataset_info: - config_name: default features: - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 10468815648 num_examples: 1793234 download_size: 4531851197 dataset_size: 10468815648 - config_name: test features: - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 531454512 num_examples: 92978 download_size: 99427549 dataset_size: 531454512 - config_name: train features: - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 10468815648 num_examples: 1793234 download_size: 4531851197 dataset_size: 10468815648 configs: - config_name: default data_files: - split: train path: data/train-* - config_name: test data_files: - split: train path: test/train-* - config_name: train data_files: - split: train path: train/train-* ---
sylvan54/Bean_Captioning_Dataset_1
sylvan54
2025-01-21T10:50:34Z
14
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-21T10:50:22Z
0
--- dataset_info: features: - name: Image sequence: sequence: sequence: uint8 - name: plant_description dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 271556338 num_examples: 771 download_size: 117703764 dataset_size: 271556338 configs: - config_name: default data_files: - split: train path: data/train-* ---
oakwood/efe_br-35
oakwood
2024-10-13T02:40:22Z
15
0
[ "task_categories:robotics", "region:us", "LeRobot" ]
[ "robotics" ]
2024-10-13T02:40:14Z
0
--- task_categories: - robotics tags: - LeRobot --- This dataset was created using [🤗 LeRobot](https://github.com/huggingface/lerobot).
umang122104/RM-Bench-code-Mistral-7B-Instruct-v0.3-yesno
umang122104
2025-06-23T21:48:12Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-23T21:48:10Z
0
--- dataset_info: features: - name: id dtype: int64 - name: prompt dtype: string - name: subset dtype: string - name: language dtype: string - name: task_id dtype: string - name: chosen_1 dtype: string - name: chosen_2 dtype: string - name: chosen_3 dtype: string - name: rejected_1 dtype: string - name: rejected_2 dtype: string - name: rejected_3 dtype: string - name: chosen_1_yes_prob dtype: float64 - name: chosen_1_no_prob dtype: float64 - name: rejected_1_yes_prob dtype: float64 - name: rejected_1_no_prob dtype: float64 - name: chosen_2_yes_prob dtype: float64 - name: chosen_2_no_prob dtype: float64 - name: rejected_2_yes_prob dtype: float64 - name: rejected_2_no_prob dtype: float64 - name: chosen_3_yes_prob dtype: float64 - name: chosen_3_no_prob dtype: float64 - name: rejected_3_yes_prob dtype: float64 - name: rejected_3_no_prob dtype: float64 splits: - name: train num_bytes: 2576722 num_examples: 228 download_size: 1100364 dataset_size: 2576722 configs: - config_name: default data_files: - split: train path: data/train-* ---
nimashoghi/matbench_mp_gap_fold3
nimashoghi
2025-03-12T20:52:23Z
65
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-12T20:52:19Z
0
--- dataset_info: features: - name: orig_idx dtype: int64 - name: positions sequence: sequence: float32 - name: atomic_numbers sequence: int64 - name: natoms dtype: int64 - name: tags sequence: int64 - name: fixed sequence: bool - name: cell sequence: sequence: sequence: float32 - name: pbc sequence: sequence: bool - name: y dtype: float64 splits: - name: train num_bytes: 81772005 num_examples: 76401 - name: val num_bytes: 8912098 num_examples: 8490 - name: test num_bytes: 22709105 num_examples: 21222 download_size: 57276627 dataset_size: 113393208 configs: - config_name: default data_files: - split: train path: data/train-* - split: val path: data/val-* - split: test path: data/test-* ---
yasimed/Cifar100_test
yasimed
2025-02-19T02:32:01Z
38
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:image", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-19T02:31:58Z
0
--- dataset_info: features: - name: image dtype: image - name: label dtype: class_label: names: '0': apple '1': aquarium_fish '2': baby '3': bear '4': beaver '5': bed '6': bee '7': beetle '8': bicycle '9': bottle '10': bowl '11': boy '12': bridge '13': bus '14': butterfly '15': camel '16': can '17': castle '18': caterpillar '19': cattle '20': chair '21': chimpanzee '22': clock '23': cloud '24': cockroach '25': couch '26': crab '27': crocodile '28': cup '29': dinosaur '30': dolphin '31': elephant '32': flatfish '33': forest '34': fox '35': girl '36': hamster '37': house '38': kangaroo '39': keyboard '40': lamp '41': lawn_mower '42': leopard '43': lion '44': lizard '45': lobster '46': man '47': maple_tree '48': motorcycle '49': mountain '50': mouse '51': mushroom '52': oak_tree '53': orange '54': orchid '55': otter '56': palm_tree '57': pear '58': pickup_truck '59': pine_tree '60': plain '61': plate '62': poppy '63': porcupine '64': possum '65': rabbit '66': raccoon '67': ray '68': road '69': rocket '70': rose '71': sea '72': seal '73': shark '74': shrew '75': skunk '76': skyscraper '77': snail '78': snake '79': spider '80': squirrel '81': streetcar '82': sunflower '83': sweet_pepper '84': table '85': tank '86': telephone '87': television '88': tiger '89': tractor '90': train '91': trout '92': tulip '93': turtle '94': wardrobe '95': whale '96': willow_tree '97': wolf '98': woman '99': worm splits: - name: train num_bytes: 22484261.0 num_examples: 10000 download_size: 22551810 dataset_size: 22484261.0 --- # Dataset Card for "Cifar100_test" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)