datasetId
large_stringlengths
6
110
author
large_stringlengths
3
34
last_modified
large_stringdate
2021-05-20 00:57:22
2025-05-07 08:14:41
downloads
int64
0
3.97M
likes
int64
0
7.74k
tags
large listlengths
1
2.03k
task_categories
large listlengths
0
16
createdAt
large_stringdate
2022-03-02 23:29:22
2025-05-07 08:13:27
trending_score
float64
1
39
card
large_stringlengths
31
1M
Rabe3/Egy-Conv-Unsloth
Rabe3
2025-04-30T21:47:43Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T21:47:40Z
null
--- dataset_info: features: - name: instruction dtype: string - name: messages sequence: - name: role dtype: string - name: content dtype: string - name: conversations struct: - name: content sequence: string - name: role sequence: string splits: - name: train num_bytes: 5136450 num_examples: 10000 download_size: 151379 dataset_size: 5136450 configs: - config_name: default data_files: - split: train path: data/train-* ---
SarangChouguley/TICQA
SarangChouguley
2025-04-30T21:41:55Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T21:41:00Z
null
--- dataset_info: - config_name: safety_warning_recognition features: - name: Filename dtype: string - name: ground_truth dtype: string - name: extra_info dtype: string - name: full_path dtype: string - name: image dtype: image splits: - name: train num_bytes: 3222145.0 num_examples: 100 download_size: 3192348 dataset_size: 3222145.0 - config_name: tools_and_components_identification features: - name: Filename dtype: string - name: ground_truth dtype: string - name: context dtype: string - name: question dtype: string - name: full_path dtype: string - name: image dtype: image splits: - name: train num_bytes: 9714061.0 num_examples: 100 download_size: 5520646 dataset_size: 9714061.0 - config_name: visual_sequence_interpretation features: - name: Filename dtype: string - name: ground_truth dtype: string - name: options dtype: string - name: question dtype: string - name: context dtype: string - name: full_path dtype: string - name: image dtype: image splits: - name: train num_bytes: 12082256.0 num_examples: 50 download_size: 12034496 dataset_size: 12082256.0 configs: - config_name: safety_warning_recognition data_files: - split: train path: safety_warning_recognition/train-* - config_name: tools_and_components_identification data_files: - split: train path: tools_and_components_identification/train-* - config_name: visual_sequence_interpretation data_files: - split: train path: visual_sequence_interpretation/train-* ---
cchoi1/kodcode-complete_1000_qwen7b_att_iter0_att40_sol5_relabeled_dedup_assertion_errors
cchoi1
2025-04-30T21:37:12Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T21:37:10Z
null
--- dataset_info: features: - name: mutation_id dtype: int64 - name: task_id dtype: string - name: mutator_prompt dtype: string - name: solver_prompt dtype: string - name: response dtype: string - name: mutation_explanation dtype: string - name: mutation_info dtype: string - name: mutator_score dtype: float64 - name: solution_scores dtype: string - name: solutions dtype: string - name: solutions_explanation dtype: string - name: solutions_info dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 12585270 num_examples: 1178 download_size: 2667432 dataset_size: 12585270 configs: - config_name: default data_files: - split: train path: data/train-* ---
dgambettaphd/D_llm2_gen9_run0_W_doc1000_synt64_tot128_lr5em5_p1k_SYNLAST
dgambettaphd
2025-04-30T21:21:19Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T21:21:12Z
null
--- dataset_info: features: - name: id dtype: int64 - name: text dtype: string - name: dataset dtype: string - name: gen dtype: int64 - name: synt dtype: int64 - name: MPP dtype: float64 splits: - name: train num_bytes: 6594612 num_examples: 13000 download_size: 3560880 dataset_size: 6594612 configs: - config_name: default data_files: - split: train path: data/train-* ---
HungVu2003/opt-350m_beta_1.0_alpha_0.6_num-company_3_dataset_2_for_gen_5
HungVu2003
2025-04-30T21:13:16Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T21:13:14Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 3877831 num_examples: 12500 download_size: 1440640 dataset_size: 3877831 configs: - config_name: default data_files: - split: train path: data/train-* ---
willx0909/shelf_robot_lerobot
willx0909
2025-04-30T21:08:33Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:timeseries", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "libero", "easo", "rlds" ]
[ "robotics" ]
2025-04-30T21:00:19Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - libero - easo - rlds configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.0", "robot_type": "easo", "total_episodes": 304, "total_frames": 70811, "total_tasks": 1, "total_videos": 0, "total_chunks": 1, "chunks_size": 1000, "fps": 50, "splits": { "train": "0:304" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "observation.joint_angles": { "dtype": "float32", "shape": [ 7 ] }, "observation.eef_pose": { "dtype": "float32", "shape": [ 6 ] }, "observation.target_eef_pose": { "dtype": "float32", "shape": [ 6 ] }, "actions": { "dtype": "float32", "shape": [ 8 ] }, "observation.images.forward_diagonal_camera_right": { "dtype": "image", "shape": [ 480, 640, 3 ] }, "observation.images.hand_camera_right": { "dtype": "image", "shape": [ 480, 640, 3 ] }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
slavekroller/HTAreasoning-methodology-reasoning-trajectories
slavekroller
2025-04-30T20:55:23Z
0
0
[ "license:cc-by-4.0", "size_categories:n<1K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "reasoning-datasets-competition" ]
[]
2025-04-30T19:50:42Z
null
--- license: cc-by-4.0 tags: - reasoning-datasets-competition --- # HTAreasoning Datasets: Can Al Value Life? ## HTAreasoning-methodology-reasoning-trajectories Dataset card Part of HTAreasoning. See https://huggingface.co/datasets/slavekroller/HTAreasoning-results. ### Dataset Fields | Field Name | Definition | | :------------------------------------------------- | :--------- | | `link` | link to source documents, containing full descriptions of an estimation model being assessed as well as the reasoning trajectories | | `methodology_choice_reservation` | severity of a methodological reservation made by the assessment committee | | `methodology_choice_class` | scope, within which a methodological choice was made by the submitter | | `methodology_choice_submitter_reasoning` | extracted reasoning trajectory of the submittor | | `methodology_choice_assessor_reasoning` | extracted reasoning trajectory of the assessment committee | | `methodology_choice_assessor_reasoning_summary_AI-generated-Gemini` | AI-generated comment - not extracted directly from the source documents - augments the extracted dataset by providing a one-line summary of the methodological reservation | ### Citation HTAreasoning-methodology-reasoning-trajectories. HTAreasoning Datasets (2025). Slavek Roller.
PTPReasoning/PubMedQA
PTPReasoning
2025-04-30T20:44:19Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T20:35:32Z
null
--- dataset_info: features: - name: question dtype: string - name: options struct: - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: answer dtype: string - name: answer_idx dtype: string splits: - name: test num_bytes: 1604644 num_examples: 1000 download_size: 810463 dataset_size: 1604644 configs: - config_name: default data_files: - split: test path: data/test-* --- reference: https://github.com/FreedomIntelligence/HuatuoGPT-o1/blob/main/evaluation/data/eval_data.json
ai2-adapt-dev/tulu-3-sft-57k-criteria-gpt4o-classified-rewritten-math
ai2-adapt-dev
2025-04-30T20:41:46Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T20:41:40Z
null
--- dataset_info: features: - name: prompt dtype: string - name: response dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string - name: dataset dtype: string - name: ground_truth sequence: string - name: openai_response dtype: string - name: task dtype: string splits: - name: train num_bytes: 260779124 num_examples: 57323 download_size: 144162436 dataset_size: 260779124 configs: - config_name: default data_files: - split: train path: data/train-* ---
TozluLider6393/yeniyeni
TozluLider6393
2025-04-30T20:38:35Z
0
0
[ "task_categories:text2text-generation", "language:tr", "license:bsl-1.0", "size_categories:n<1K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "code" ]
[ "text2text-generation" ]
2025-04-30T20:37:31Z
null
--- license: bsl-1.0 task_categories: - text2text-generation language: - tr tags: - code pretty_name: furkan2 size_categories: - 1K<n<10K ---
palli23/spjallromur-2x-gold
palli23
2025-04-30T20:31:40Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T20:31:35Z
null
--- dataset_info: features: - name: id dtype: string - name: audio dtype: audio: sampling_rate: 16000 - name: text dtype: string - name: start dtype: float64 - name: end dtype: float64 - name: speaker dtype: string - name: session dtype: string splits: - name: train num_bytes: 21493489.0 num_examples: 202 download_size: 21142619 dataset_size: 21493489.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
hypaai/nv_yo_0_4_wspr
hypaai
2025-04-30T20:29:12Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T20:16:02Z
null
--- dataset_info: features: - name: input_features sequence: sequence: sequence: float32 - name: labels sequence: sequence: int64 splits: - name: train num_bytes: 49803708400.0 num_examples: 51846 download_size: 6677100085 dataset_size: 49803708400.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
INFERLab/BLUED
INFERLab
2025-04-30T20:19:00Z
0
0
[ "license:apache-2.0", "region:us" ]
[]
2025-04-30T20:00:25Z
null
--- license: apache-2.0 --- --- tags: - energy disaggregation - non-intrusive load monitoring - time series - electrical load monitoring license: unknown # License information was not explicitly stated in the paper, might need clarification. language: - en pretty_name: BLUED (Building-Level fUlly-labeled dataset for Electricity Disaggregation) --- # Dataset Card for BLUED ## Dataset Description BLUED (Building-Level fUlly-labeled dataset for Electricity Disaggregation) is a public dataset designed for event-based Non-Intrusive Load Monitoring (NILM) research. It contains high-frequency voltage and current measurements from a single-family home in the United States over one week. The key feature of this dataset is the detailed labeling of appliance state transitions (events), providing ground truth for evaluating event-based disaggregation algorithms. The dataset aims to facilitate the development, testing, and comparison of NILM algorithms. ## Dataset Details * **Data Collection:** * Data was collected over one week in October 2011 from a single-family house in Pittsburgh, Pennsylvania. * Aggregate voltage and current measurements were captured at the main distribution panel using a National Instruments DAQ (NI USB-9215A) at a sampling rate of 12 kHz. Current was measured using split-core current transformers, and voltage was measured using a voltage transformer. * Ground truth for appliance events was collected using a combination of plug-level power meters (FireFly sensors), environmental sensors (light, sound, vibration, etc.), and circuit-level current measurements. * Events were defined as changes in power consumption greater than 30 watts lasting at least 5 seconds. * Timestamps for ground truth events were manually synchronized with the aggregate power signal via visual inspection. * **Data Content:** * Raw voltage (one phase) and current (two phases) waveforms sampled at 12 kHz. * Computed active power at 60 Hz. * A list of timestamped events, identifying the appliance and the transition type (e.g., on/off). * Covers approximately 50 electrical appliances, though not all were active or met the event criteria during the collection week. * Includes 2,482 labeled events in total, with 2,355 attributed to known appliances and 127 from unknown sources (clustered into potentially 11 distinct appliances). Events are split between Phase A (904 events) and Phase B (1578 events). * **Data Format:** Raw current and voltage files, along with a list of event timestamps. Active power computed at 60Hz is also included. * **Data Splits:** The paper presents preliminary results using the whole week but suggests future work might involve splitting into training/testing sets. ## Uses * **Non-Intrusive Load Monitoring (NILM):** Primarily designed for developing and evaluating event-based energy disaggregation algorithms. * **Appliance Usage Pattern Analysis:** Studying how and when different appliances are used in a residential setting. * **Occupancy Detection:** Inferring household occupancy based on appliance usage. * **Energy Management & Efficiency:** Developing strategies for residential energy savings. * **Anomaly Detection & Fault Diagnostics:** Identifying unusual appliance behavior or potential faults. * **Assisted Living Applications:** Monitoring activities of daily living through appliance usage. ## Dataset Limitations * **Duration:** One week of data may not capture the usage patterns of all appliances, especially seasonal ones (like the air conditioner) or those used infrequently (like the dryer). * **Sensor Frequency Limitation:** The current sensors used had a cutoff frequency around 300 Hz, limiting the analysis of higher-frequency harmonics (beyond the 5th harmonic). * **Incomplete Ground Truth:** Approximately 5% of events detected in the aggregate signal could not be attributed to the monitored appliances and are labeled as "unknown". Some appliances (~25%) had no registered events meeting the criteria during the collection week. * **Single Home:** Data represents only one specific home and its occupants' behavior. ## Citation ```bibtex @inproceedings{anderson2012blued, title={BLUED: A fully labeled public dataset for event-based non-intrusive load monitoring research}, author={Anderson, Kyle and Ocneanu, Adrian and Benitez, Diego and Carlson, Derrick and Rowe, Anthony and Berg{\'e}s, Mario}, booktitle={Proceedings of the 2nd ACM SIGKDD international workshop on data mining applications in sustainability}, pages={1--8}, year={2012}, organization={ACM} }
dgambettaphd/D_llm2_gen8_run0_W_doc1000_synt64_tot128_lr5em5_p1k_SYNLAST
dgambettaphd
2025-04-30T20:16:52Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T20:16:49Z
null
--- dataset_info: features: - name: id dtype: int64 - name: text dtype: string - name: dataset dtype: string - name: gen dtype: int64 - name: synt dtype: int64 - name: MPP dtype: float64 splits: - name: train num_bytes: 6132841 num_examples: 12000 download_size: 3340631 dataset_size: 6132841 configs: - config_name: default data_files: - split: train path: data/train-* ---
microsoft/CoSAlign
microsoft
2025-04-30T20:15:48Z
0
1
[ "license:cc-by-nc-4.0", "region:us" ]
[]
2025-04-30T20:15:48Z
null
--- license: cc-by-nc-4.0 ---
Ahmedaldysty/OPCUA-packets-sharegpt2
Ahmedaldysty
2025-04-30T20:08:52Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T20:08:48Z
null
--- dataset_info: features: - name: from_system dtype: string - name: from_human dtype: string - name: from_gpt dtype: string splits: - name: train num_bytes: 71359570 num_examples: 100000 download_size: 6184184 dataset_size: 71359570 configs: - config_name: default data_files: - split: train path: data/train-* ---
msobroza/cg1
msobroza
2025-04-30T20:07:10Z
0
0
[ "task_categories:text-generation", "task_categories:text2text-generation", "task_categories:text-retrieval", "task_categories:question-answering", "task_categories:sentence-similarity", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "library:distilabel", "region:us", "synthetic", "distilabel", "rlaif", "datacraft" ]
[ "text-generation", "text2text-generation", "text-retrieval", "question-answering", "sentence-similarity" ]
2025-04-30T20:07:08Z
null
--- size_categories: n<1K task_categories: - text-generation - text2text-generation - text-retrieval - question-answering - sentence-similarity dataset_info: features: - name: context dtype: string - name: question dtype: string - name: response dtype: 'null' - name: positive_retrieval dtype: string - name: negative_retrieval dtype: string - name: positive_reranking dtype: 'null' - name: negative_reranking dtype: 'null' splits: - name: train num_bytes: 89634 num_examples: 100 download_size: 54710 dataset_size: 89634 configs: - config_name: default data_files: - split: train path: data/train-* tags: - synthetic - distilabel - rlaif - datacraft --- <p align="left"> <a href="https://github.com/argilla-io/distilabel"> <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/> </a> </p> # Dataset Card for cg1 This dataset has been created with [distilabel](https://distilabel.argilla.io/). ## Dataset Summary This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI: ```console distilabel pipeline run --config "https://huggingface.co/datasets/msobroza/cg1/raw/main/pipeline.yaml" ``` or explore the configuration: ```console distilabel pipeline info --config "https://huggingface.co/datasets/msobroza/cg1/raw/main/pipeline.yaml" ``` ## Dataset structure The examples have the following structure per configuration: <details><summary> Configuration: default </summary><hr> ```json { "context": "Cardif Libert\u00e9s Emprunteur\n\nCotisations fixes Janvier 2022\n\nCardif Libert\u00e9s Emprunteur\n\nNOTICE Conventions d\u2019assurance collective n\u00b0 2827/736", "negative_reranking": null, "negative_retrieval": "Cardif Libert\u00e9s Emprunteur has fixed contributions in January 2022 regarding the convention n\u00b0 1234/567 for the collective insurance of the employee\u0027s car.", "positive_reranking": null, "positive_retrieval": "What are the fixed contributions of Cardif Libert\u00e9s Emprunteur in January 2022?", "question": "What are the fixed contributions of Cardif Libert\u00e9s Emprunteur in January 2022?", "response": null } ``` This subset can be loaded as: ```python from datasets import load_dataset ds = load_dataset("msobroza/cg1", "default") ``` Or simply as it follows, since there's only one configuration and is named `default`: ```python from datasets import load_dataset ds = load_dataset("msobroza/cg1") ``` </details>
urbas/mbpp100_w_backdoor_fixed
urbas
2025-04-30T19:43:16Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T19:43:14Z
null
--- dataset_info: features: - name: id dtype: int64 - name: prompt dtype: string - name: test_list sequence: string - name: backdoor dtype: bool splits: - name: train num_bytes: 29031 num_examples: 100 download_size: 16947 dataset_size: 29031 configs: - config_name: default data_files: - split: train path: data/train-* ---
mervinpraison/harupfall-accelerometer-images-actual
mervinpraison
2025-04-30T19:24:13Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T18:45:58Z
null
--- dataset_info: features: - name: sequence dtype: string - name: sensor dtype: string - name: raw_data dtype: string - name: main_label dtype: string - name: extracted_labels dtype: string - name: image dtype: image splits: - name: train num_bytes: 466088404.0 num_examples: 930 download_size: 95375237 dataset_size: 466088404.0 --- # Dataset Card for "harupfall-accelerometer-images-actual" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
mervinpraison/harupfall-accelerometer-data-actual
mervinpraison
2025-04-30T19:22:09Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T19:21:55Z
null
--- dataset_info: features: - name: sequence dtype: string - name: sensor dtype: string - name: raw_data dtype: string - name: main_label dtype: string - name: extracted_labels dtype: string splits: - name: train num_bytes: 9458457 num_examples: 930 download_size: 0 dataset_size: 9458457 --- # Dataset Card for "harupfall-accelerometer-data-actual" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
HungVu2003/opt-350m_beta_1.0_alpha_0.6_num-company_3_dataset_1_for_gen_5
HungVu2003
2025-04-30T19:08:48Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T19:08:47Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 3586430 num_examples: 12500 download_size: 1877336 dataset_size: 3586430 configs: - config_name: default data_files: - split: train path: data/train-* ---
HungVu2003/opt-350m_beta_1.0_alpha_0.6_num-company_3_dataset_0_for_gen_5
HungVu2003
2025-04-30T19:00:06Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T19:00:05Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 6112706 num_examples: 12500 download_size: 2090382 dataset_size: 6112706 configs: - config_name: default data_files: - split: train path: data/train-* ---
Harini4623/Vitalik_Buterin
Harini4623
2025-04-30T19:00:02Z
0
0
[ "task_categories:question-answering", "task_categories:table-question-answering", "language:en", "license:mit", "size_categories:1K<n<10K", "region:us", "code" ]
[ "question-answering", "table-question-answering" ]
2025-04-30T18:43:50Z
null
--- license: mit task_categories: - question-answering - table-question-answering language: - en tags: - code size_categories: - 1K<n<10K --- # Vitalik Buterin Agent This workspace contains the following file: - **Vitalik Buterin Agent.xlsx**: An Excel file with the pertinent data for the Vitalik Buterin Agent project. ## Getting Started Open the `.xlsx` file with Microsoft Excel or any compatible spreadsheet software. ## License MIT License
Raja2/processed_data
Raja2
2025-04-30T18:44:57Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T18:44:26Z
null
--- dataset_info: features: - name: question dtype: string - name: temp_rag dtype: string - name: solution dtype: string - name: attempt dtype: string - name: thinking_trajectories dtype: string splits: - name: train num_bytes: 4650004 num_examples: 262 download_size: 1959520 dataset_size: 4650004 configs: - config_name: default data_files: - split: train path: data/train-* ---
arclabmit/eval_koch_act_boxbin_model
arclabmit
2025-04-30T18:14:57Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-04-30T18:14:40Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "koch", "total_episodes": 10, "total_frames": 5630, "total_tasks": 1, "total_videos": 20, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:10" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.front": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.overhead": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
iyosha-huji/stressEval
iyosha-huji
2025-04-30T18:12:23Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T18:08:55Z
null
--- dataset_info: features: - name: transcription_id dtype: string - name: transcription dtype: string - name: description dtype: string - name: intonation dtype: string - name: interpretation_id dtype: string - name: audio dtype: audio: sampling_rate: 16000 - name: metadata struct: - name: gender dtype: string - name: language_code dtype: string - name: sample_rate_hertz dtype: int64 - name: voice_name dtype: string - name: possible_answers sequence: string - name: label dtype: int64 - name: stress_pattern struct: - name: binary sequence: int64 - name: indices sequence: int64 - name: words sequence: string - name: audio_lm_prompt dtype: string splits: - name: test num_bytes: 29451897.32142857 num_examples: 218 download_size: 22754357 dataset_size: 29451897.32142857 configs: - config_name: default data_files: - split: test path: data/test-* ---
punwaiw/o1-verifiable
punwaiw
2025-04-30T18:12:13Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T18:05:29Z
null
--- dataset_info: features: - name: idx dtype: string - name: question list: - name: content dtype: string - name: role dtype: string - name: reasoning_content dtype: string - name: text dtype: string - name: ground_truth dtype: 'null' splits: - name: train num_bytes: 128583574 num_examples: 23658 download_size: 56011605 dataset_size: 128583574 configs: - config_name: default data_files: - split: train path: data/train-* ---
dgambettaphd/D_llm2_gen6_run0_W_doc1000_synt64_tot128_lr5em5_p1k_SYNLAST
dgambettaphd
2025-04-30T18:11:01Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T18:10:56Z
null
--- dataset_info: features: - name: id dtype: int64 - name: text dtype: string - name: dataset dtype: string - name: gen dtype: int64 - name: synt dtype: int64 - name: MPP dtype: float64 splits: - name: train num_bytes: 5188613 num_examples: 10000 download_size: 2896477 dataset_size: 5188613 configs: - config_name: default data_files: - split: train path: data/train-* ---
AdversarialRLHF/rloo_pythia410m_tldr6.9b_rm410mdata_mergedsft_prefix_kl0.005_52_eval-dataset
AdversarialRLHF
2025-04-30T18:10:55Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T18:10:47Z
null
--- dataset_info: features: - name: id dtype: string - name: subreddit dtype: string - name: title dtype: string - name: post dtype: string - name: summary dtype: string - name: query_token sequence: int64 - name: query dtype: string - name: reference_response dtype: string - name: reference_response_token sequence: int64 - name: reference_response_token_len dtype: int64 - name: query_reference_response dtype: string - name: query_reference_response_token sequence: int64 - name: query_reference_response_token_response_label sequence: int64 - name: query_reference_response_token_len dtype: int64 - name: generations_rloo_pythia410m_tldr6.9b_rm410mdata_mergedsft_prefix_kl0.005 dtype: string splits: - name: validation num_bytes: 128494549 num_examples: 6447 download_size: 33809015 dataset_size: 128494549 configs: - config_name: default data_files: - split: validation path: data/validation-* ---
erdem-erdem/24-game-qwq-8k
erdem-erdem
2025-04-30T18:10:34Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T18:10:32Z
null
--- dataset_info: features: - name: conversations list: - name: from dtype: string - name: value dtype: string splits: - name: train num_bytes: 71621687 num_examples: 7980 download_size: 31849699 dataset_size: 71621687 configs: - config_name: default data_files: - split: train path: data/train-* ---
soynade-research/Wolof-Books
soynade-research
2025-04-30T17:56:59Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T17:56:58Z
null
--- dataset_info: features: - name: url dtype: string - name: content dtype: string - name: source dtype: string splits: - name: train num_bytes: 1355156 num_examples: 1151 download_size: 806978 dataset_size: 1355156 configs: - config_name: default data_files: - split: train path: data/train-* ---
shylee/eval_temp
shylee
2025-04-30T17:52:47Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-04-30T17:52:39Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 2, "total_frames": 1706, "total_tasks": 1, "total_videos": 6, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.FrontCam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.TopCam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.WristCam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
johnny-katsa/human-edit
johnny-katsa
2025-04-30T17:51:26Z
149
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T17:44:35Z
null
--- dataset_info: config_name: human-edit-train features: - name: input_image dtype: image - name: edit_prompt dtype: string - name: edited_image dtype: image splits: - name: train num_bytes: 9471452169.238 num_examples: 5751 download_size: 9420452305 dataset_size: 9471452169.238 configs: - config_name: human-edit-train data_files: - split: train path: human-edit-train/train-* ---
HungVu2003/opt-350m_beta_0.5_alpha_0.4_num-company_3_dataset_2_for_gen_11
HungVu2003
2025-04-30T17:50:08Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T17:50:05Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 3210743 num_examples: 12498 download_size: 1089057 dataset_size: 3210743 configs: - config_name: default data_files: - split: train path: data/train-* ---
shylee/eval_temp2
shylee
2025-04-30T17:43:56Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-04-30T17:43:50Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 1, "total_frames": 840, "total_tasks": 1, "total_videos": 3, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:1" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.FrontCam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.TopCam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.WristCam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
twinkle-ai/tw-function-call-reasoning-10k
twinkle-ai
2025-04-30T15:57:27Z
3
2
[ "task_categories:text-generation", "language:zh", "language:en", "license:cc-by-4.0", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "Taiwan", "R.O.C", "zh-tw", "function-calling", "twinkle.ai", "tool" ]
[ "text-generation" ]
2025-04-30T06:23:19Z
2
--- dataset_info: features: - name: id dtype: int64 - name: query dtype: string - name: tools dtype: string - name: query_zhtw dtype: string - name: think dtype: string - name: answer dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 60989042.60824564 num_examples: 10000 download_size: 24870378 dataset_size: 60989042.60824564 configs: - config_name: default data_files: - split: train path: data/train-* license: cc-by-4.0 task_categories: - text-generation language: - zh - en tags: - Taiwan - R.O.C - zh-tw - function-calling - twinkle.ai - tool pretty_name: >- Traditional Chinese Dataset for Function Calling with Chain-of-Thought Reasoning size_categories: - 1K<n<10K --- # Dataset Card for tw-function-call-reasoning-10k <!-- Provide a quick summary of the dataset. --> ![image/png](https://cdn-uploads.huggingface.co/production/uploads/618dc56cbc345ca7bf95f3cd/6tenWtLBOFTQTZsKCfwK_.png) 本資料集為繁體中文版本的函式呼叫(Function Calling)資料集,翻譯自 [AymanTarig/function-calling-v0.2-with-r1-cot](https://huggingface.co/datasets/AymanTarig/function-calling-v0.2-with-r1-cot),而該資料集本身是 [Salesforce/xlam-function-calling-60k](https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k) 的修正版。我們利用語言模型翻譯後,經人工修改,旨在打造高品質的繁體中文工具使用語料。 ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> **tw-function-call-reasoning-10k** 是一個專為語言模型「工具使用能力(Function Calling)」訓練所設計的繁體中文資料集。其內容源自 [AymanTarig/function-calling-v0.2-with-r1-cot](https://huggingface.co/datasets/AymanTarig/function-calling-v0.2-with-r1-cot),該資料集又為 [Salesforce/xlam-function-calling-60k](https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k) 的修正版。我們透過語言模型將資料轉譯為繁體中文,並保留原始的 Chain-of-Thought(CoT)推理結構。 此資料集可作為未來擴充**繁體中文 function-calling 語料**的基石,並有助於強化 LLM 在實際應用中的推理能力與工具整合能力。 - **Curated by:** [Minyi Chen](https://huggingface.co/minyichen) - **Funded by:** [APMIC](https://www.apmic.ai/) - **Shared by:** [Minyi Chen](https://huggingface.co/minyichen) - **Language(s) (NLP):** Traditional Chinese & English - **License:** Creative Commons Attribution 4.0 ### Dataset Sources <!-- Provide the basic links for the dataset. --> - **Repository:** [twinkle-ai/tw-function-call-reasoning-10k](https://huggingface.co/datasets/twinkle-ai/tw-function-call-reasoning-10k) ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> - **語言模型工具使用能力訓練:** 可用於指令微調(Instruction Tuning),提升語言模型在對話中準確選擇工具(Tool Selection)與生成結構化輸入(Tool Input)的能力。 - **Chain-of-Thought 推理建構:** 資料集中保留了逐步思考與推導過程,適合用於訓練具多步驟邏輯推理能力的模型。 - **繁體中文指令式語料建構基礎:** 作為日後構建更大規模繁體中文工具使用資料集的重要起點。 - **代理人系統(LLM Agent)訓練場景模擬:** 可用於模擬 agent 在使用 API 工具或外部函式時的互動語境與結構。 ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> - **不當工具呼叫生成:** 本資料集假設輸出格式符合固定結構,並不適用於開放式、無約束的 API 呼叫語境。 - **對資料品質要求極高之產業應用:** 雖已盡力保留語意與格式,但此資料為翻譯自英文語料,部分語句仍可能存有潛在語用或語調偏差,不建議直接部署於高風險應用(如醫療、法律)。 - **用於訓練具偏見或攻擊性的工具選擇模型:** 本資料集不包含針對敏感議題或潛在有害工具操作的處理,不適合用於開發會執行未經審核動作之系統。 ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> > ⚠️*注意*: messages 採取 *Hermes* 格式設計。 ```json { 'id', # 樣本唯一編號 'query', # 英文任務指令(原始輸入) 'tools', # 可使用的工具清單(含名稱、參數定義等 JSON 結構) 'query_zhtw', # 指令的繁體中文翻譯版本 'think', # 模型的思考推理過程(繁體中文) 'answer', # 預期執行的工具與參數(JSON 格式) 'messages' # 完整對話歷程(包含角色與訊息內容,用於 SFT 微調) } ``` ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> 本資料集的建立,旨在填補「繁體中文語境下的函式呼叫訓練資料」之嚴重缺口。儘管英文語料(如 [Salesforce/xlam-function-calling-60k](https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k))在 tool calling 領域已有初步建構,但繁體中文語料的缺乏導致中文大型語言模型(LLM)在相關任務上的泛化能力受限。 因此,我們以 AymanTarig 所釋出的 [function-calling-v0.2-with-r1-cot](https://huggingface.co/datasets/AymanTarig/function-calling-v0.2-with-r1-cot) 為藍本,進一步運用語言模型將其翻譯為繁體中文,並保留推理(Chain-of-Thought)內容,使其可廣泛應用於指令微調、工具選擇與 agent 推理等繁體中文 LLM 實驗。 ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> 本資料集是根據 [AymanTarig/function-calling-v0.2-with-r1-cot](https://huggingface.co/datasets/AymanTarig/function-calling-v0.2-with-r1-cot) 所提供的英文函式呼叫資料,利用譯語言模型自動轉譯為繁體中文後,再經人工清洗。 處理流程包括: - 篩選原始英文資料集中包含 tool calling 和推理步驟的樣本(我們取樣 [AymanTarig/function-calling-v0.2-with-r1-cot](https://huggingface.co/datasets/AymanTarig/function-calling-v0.2-with-r1-cot) 10k 條); - 翻譯 user, assistant, tool_input 等欄位,保留原始資料格式 - 人工審核部分翻譯結果,確保語意通順與邏輯一致性 - 最終格式與原始資料相同,便於與英文版本並行訓練與比較 ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> 本資料集為從英文資料翻譯而來,儘管已使用高品質模型進行語意轉換,仍可能存在以下限制: - **語言風格偏誤:** 原始資料以英文邏輯與對話風格為主,翻譯後可能出現不符合中文語境的表達方式,或過於直接、不自然的語序。 - **工具輸入格式敏感:** 資料中包含大量 tool_input 欄位的 JSON 結構,雖已保留結構正確性,但仍建議訓練前進行驗證清洗,避免因特殊符號造成格式錯誤。 - **語意準確度依賴模型輸出:** 翻譯過程依賴自動化模型,可能遺漏原始推理中部分細節、反應不完全,對需要精準語意理解的應用造成風險。 - **語境偏向開發者工具任務:** 資料主要集中在模擬工具使用情境,如天氣查詢、計算、轉換等任務,可能不適合應用於開放式、情感導向、或文化語境相關的對話建模。 ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> - 適用於結構化任務與代理人系統(Agent)訓練,如 chat 工具選擇、API 任務執行等。 - 不建議直接用於無監督學習、生成文本任務,因資料格式具明確結構,且偏重邏輯推理與工具使用場景。 - 建議於訓練前進行資料驗證與格式校正,尤其針對 tool_input 欄位。 - 應搭配人工評估驗證翻譯品質,特別是部署至需高度語意一致性與語言文化敏感度的應用時。 ## Citation <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> ```yaml @misc{twinkle2024functioncalling, title = {twinkle-ai/tw-function-call-reasoning-10k: A Traditional Chinese Dataset for Function Calling with Chain-of-Thought Reasoning}, author = {Twinkle AI}, year = {2025}, note = {Available at: \url{https://huggingface.co/datasets/twinkle-ai/tw-function-call-reasoning-10k}; Translated from AymanTarig/function-calling-v0.2-with-r1-cot} } ``` ## Dataset Card Authors [Twinkle AI](https://huggingface.co/twinkle-ai) ## Dataset Card Contact [Twinkle AI](https://huggingface.co/twinkle-ai)
ttn1410/Volatility_smr
ttn1410
2025-04-30T13:10:43Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-29T17:13:56Z
null
--- dataset_info: features: - name: reports dtype: string - name: labels dtype: string splits: - name: train num_bytes: 65730965 num_examples: 35370 download_size: 10943501 dataset_size: 65730965 configs: - config_name: default data_files: - split: train path: data/train-* ---
devrev/shanay-demo
devrev
2025-04-30T13:06:55Z
0
0
[ "language:en", "license:mit", "region:us", "curator" ]
[]
2025-04-30T13:06:47Z
null
--- language: en license: mit tags: - curator --- <a href="https://github.com/bespokelabsai/curator/"> <img src="https://huggingface.co/datasets/bespokelabs/Bespoke-Stratos-17k/resolve/main/made_with_curator.png" alt="Made with Curator" width=200px> </a> ## Dataset card for shanay-demo This dataset was made with [Curator](https://github.com/bespokelabsai/curator/). ## Dataset details A sample from the dataset: ```python { "natural_language_query": "Show me all open tickets", "search_query": { "filter": "state:open", "query": "" }, "complexity_level": 1 } ``` ## Loading the dataset You can load this dataset using the following code: ```python from datasets import load_dataset dataset = load_dataset("devrev/shanay-demo") ```
jaeyong2/Magpie-Qwen-8B-Ko
jaeyong2
2025-04-30T13:04:52Z
0
0
[ "region:us" ]
[]
2025-04-30T13:04:50Z
null
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 716124 num_examples: 1000 download_size: 326802 dataset_size: 716124 configs: - config_name: default data_files: - split: train path: data/train-* ---
ZeynepAltundal/orca-math-word-problems-tr-merged-deduplicated
ZeynepAltundal
2025-04-30T13:04:42Z
0
0
[ "region:us" ]
[]
2025-04-30T13:04:38Z
null
--- dataset_info: features: - name: question dtype: string - name: answer dtype: string splits: - name: train num_bytes: 2952805.5345953004 num_examples: 4029 download_size: 1392149 dataset_size: 2952805.5345953004 configs: - config_name: default data_files: - split: train path: data/train-* ---
kwangchaeko/koch_test
kwangchaeko
2025-04-30T13:04:39Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "region:us", "LeRobot", "koch", "tutorial" ]
[ "robotics" ]
2025-04-30T13:04:26Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - koch - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "koch", "total_episodes": 2, "total_frames": 1685, "total_tasks": 1, "total_videos": 2, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 4 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex" ] }, "observation.state": { "dtype": "float32", "shape": [ 4 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
shahidul034/filtered_rare_speciesV2
shahidul034
2025-04-30T13:02:51Z
0
0
[ "region:us" ]
[]
2025-04-30T12:59:58Z
null
--- dataset_info: features: - name: image dtype: image - name: kingdom dtype: string - name: phylum dtype: string - name: class dtype: string - name: order dtype: string - name: family dtype: string - name: genus dtype: string - name: species dtype: string - name: sciName dtype: string - name: common dtype: string splits: - name: train num_bytes: 3385900936.350934 num_examples: 9586 - name: test num_bytes: 878703187.1200659 num_examples: 2397 download_size: 4321632925 dataset_size: 4264604123.4709997 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
ttn1410/Economic_smr
ttn1410
2025-04-30T13:02:15Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-29T17:21:40Z
null
--- dataset_info: features: - name: reports dtype: string - name: labels dtype: string splits: - name: train num_bytes: 83253389 num_examples: 37530 download_size: 5006839 dataset_size: 83253389 configs: - config_name: default data_files: - split: train path: data/train-* ---
willnorris/my-dataset-12
willnorris
2025-04-30T12:59:39Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "region:us", "LeRobot" ]
[ "robotics" ]
2025-04-30T12:43:21Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 1, "total_frames": 472, "total_tasks": 1, "total_videos": 2, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:1" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "observation.images.cam1": { "dtype": "video", "shape": [ 480, 640, 3 ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.cam2": { "dtype": "video", "shape": [ 480, 640, 3 ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": { "motors": [ "shoulder_pan", "shoulder_lift", "elbow_flex", "wrist_flex", "wrist_roll", "gripper" ] } }, "action": { "dtype": "float32", "shape": [ 6 ], "names": { "motors": [ "shoulder_pan", "shoulder_lift", "elbow_flex", "wrist_flex", "wrist_roll", "gripper" ] } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "next.done": { "dtype": "bool", "shape": [ 1 ] }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
Trouvere/hw_nlp_lab4
Trouvere
2025-04-30T12:58:21Z
0
0
[ "license:apache-2.0", "region:us" ]
[]
2025-04-30T12:32:35Z
null
--- license: apache-2.0 ---
SayantanJoker/Shrutilipi_Hindi_resampled_44100_merged_1_quality_metadata
SayantanJoker
2025-04-30T12:56:47Z
0
0
[ "region:us" ]
[]
2025-04-30T12:56:45Z
null
--- dataset_info: features: - name: text dtype: string - name: file_name dtype: string - name: utterance_pitch_mean dtype: float32 - name: utterance_pitch_std dtype: float32 - name: snr dtype: float64 - name: c50 dtype: float64 - name: speaking_rate dtype: string - name: phonemes dtype: string - name: stoi dtype: float64 - name: si-sdr dtype: float64 - name: pesq dtype: float64 - name: noise dtype: string - name: reverberation dtype: string - name: speech_monotony dtype: string - name: sdr_noise dtype: string - name: pesq_speech_quality dtype: string splits: - name: train num_bytes: 24644471 num_examples: 50000 download_size: 8345109 dataset_size: 24644471 configs: - config_name: default data_files: - split: train path: data/train-* ---
Minuskid/AndroidControl_700samples_qwen2_5vl_filtered
Minuskid
2025-04-30T12:56:15Z
85
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-23T03:36:24Z
null
--- dataset_info: features: - name: id dtype: string - name: images sequence: image - name: problem dtype: string - name: answer dtype: string - name: image_size sequence: int64 splits: - name: train num_bytes: 214618455.0 num_examples: 634 - name: validation num_bytes: 49971603.0 num_examples: 158 download_size: 264178935 dataset_size: 264590058.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
HungVu2003/opt-350m_beta_0.5_alpha_0.4_num-company_3_dataset_1_for_gen_9
HungVu2003
2025-04-30T12:54:22Z
0
0
[ "region:us" ]
[]
2025-04-30T12:54:21Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 2824257 num_examples: 12498 download_size: 1538647 dataset_size: 2824257 configs: - config_name: default data_files: - split: train path: data/train-* ---
EYEDOL/mozilla_commonvoice_naijaYoruba1_preprocessed_train_batch_5
EYEDOL
2025-04-30T12:53:56Z
0
0
[ "region:us" ]
[]
2025-04-30T12:50:26Z
null
--- dataset_info: features: - name: audio dtype: audio: sampling_rate: 16000 - name: text dtype: string - name: input_length dtype: int64 - name: input_features sequence: sequence: float32 - name: labels sequence: int64 - name: labels_length dtype: int64 splits: - name: train num_bytes: 13939154594.875 num_examples: 12961 download_size: 3097334655 dataset_size: 13939154594.875 configs: - config_name: default data_files: - split: train path: data/train-* ---
HungVu2003/opt-350m_beta_0.5_alpha_0.4_num-company_3_dataset_0_for_gen_9
HungVu2003
2025-04-30T12:51:04Z
0
0
[ "region:us" ]
[]
2025-04-30T12:51:03Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 4275556 num_examples: 12498 download_size: 1413562 dataset_size: 4275556 configs: - config_name: default data_files: - split: train path: data/train-* ---
dangdangde/lgb_data_2_label
dangdangde
2025-04-30T12:46:49Z
0
0
[ "region:us" ]
[]
2025-04-30T12:27:45Z
null
--- dataset_info: features: - name: text dtype: string - name: label_id dtype: int64 - name: language dtype: string - name: unsloth/Qwen2.5-14B-Instruct-bnb-4bit_label_1 dtype: float64 - name: unsloth/Qwen2.5-14B-Instruct-bnb-4bit_label_2 dtype: float64 - name: unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit_label_1 dtype: float64 - name: unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit_label_2 dtype: float64 - name: unsloth/gemma-2-9b-it-bnb-4bit_label_1 dtype: float64 - name: unsloth/gemma-2-9b-it-bnb-4bit_label_2 dtype: float64 - name: unsloth/mistral-7b-instruct-v0.3-bnb-4bit_label_1 dtype: float64 - name: unsloth/mistral-7b-instruct-v0.3-bnb-4bit_label_2 dtype: float64 - name: ds dtype: string splits: - name: lgb_data_2_label num_bytes: 13127110 num_examples: 63512 download_size: 6141595 dataset_size: 13127110 configs: - config_name: default data_files: - split: lgb_data_2_label path: data/lgb_data_2_label-* ---
Dans-DiscountModels/pretokenization-test-3
Dans-DiscountModels
2025-04-30T12:37:48Z
37
0
[ "size_categories:1K<n<10K", "format:parquet", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-15T07:19:05Z
null
--- dataset_info: features: - name: input_ids sequence: int64 - name: attention_mask sequence: int64 - name: labels sequence: int64 splits: - name: train num_bytes: 43247085360 num_examples: 1199994 download_size: 4962409356 dataset_size: 43247085360 configs: - config_name: default data_files: - split: train path: data/train-* ---
Ayushnangia/MetaMathFewshot-4to8k
Ayushnangia
2025-04-30T12:36:48Z
0
0
[ "region:us" ]
[]
2025-04-30T12:36:24Z
null
--- dataset_info: features: - name: question dtype: string - name: answer dtype: string - name: input_ids sequence: int32 - name: attention_mask sequence: int8 splits: - name: train num_bytes: 473296171 num_examples: 10000 download_size: 34058968 dataset_size: 473296171 configs: - config_name: default data_files: - split: train path: data/train-* ---
EYEDOL/mozilla_commonvoice_naijaYoruba1_preprocessed_train_batch_4
EYEDOL
2025-04-30T12:36:01Z
0
0
[ "region:us" ]
[]
2025-04-30T12:33:00Z
null
--- dataset_info: features: - name: audio dtype: audio: sampling_rate: 16000 - name: text dtype: string - name: input_length dtype: int64 - name: input_features sequence: sequence: float32 - name: labels sequence: int64 - name: labels_length dtype: int64 splits: - name: train num_bytes: 13926934672.75 num_examples: 12962 download_size: 3078372126 dataset_size: 13926934672.75 configs: - config_name: default data_files: - split: train path: data/train-* ---
ttn1410/Momentum_smr
ttn1410
2025-04-30T12:29:30Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-29T17:17:01Z
null
--- dataset_info: features: - name: reports dtype: string - name: labels dtype: string splits: - name: train num_bytes: 101168344 num_examples: 34110 download_size: 15681200 dataset_size: 101168344 configs: - config_name: default data_files: - split: train path: data/train-* ---
ttn1410/Consumer_smr
ttn1410
2025-04-30T12:29:22Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-29T17:19:42Z
null
--- dataset_info: features: - name: reports dtype: string - name: labels dtype: string splits: - name: train num_bytes: 89754791 num_examples: 37290 download_size: 5531728 dataset_size: 89754791 configs: - config_name: default data_files: - split: train path: data/train-* ---
doublesizebed/multilingual_ms_en
doublesizebed
2025-04-30T12:28:46Z
0
0
[ "license:apache-2.0", "region:us" ]
[]
2025-04-30T11:54:13Z
null
--- license: apache-2.0 dataset_info: features: - name: audio_filename dtype: string - name: prompt dtype: string - name: transcription dtype: string - name: gender dtype: string - name: audio_filepath dtype: audio splits: - name: train num_bytes: 12993505394.655 num_examples: 247481 - name: test num_bytes: 975202.0 num_examples: 20 download_size: 13252814519 dataset_size: 12994480596.655 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
shylee/eval_DP_so100_gauze_temp
shylee
2025-04-30T12:27:24Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-04-30T12:27:18Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 1, "total_frames": 633, "total_tasks": 1, "total_videos": 3, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:1" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.FrontCam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.TopCam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.WristCam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
gsarti/qe4pe
gsarti
2025-04-30T12:23:30Z
830
4
[ "task_categories:translation", "annotations_creators:machine-generated", "language_creators:machine-generated", "language_creators:expert-generated", "source_datasets:Unbabel/TowerEval-Data-v0.1", "language:en", "language:it", "language:nl", "license:apache-2.0", "size_categories:10K<n<100K", "format:csv", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2503.03044", "region:us", "machine-translation", "quality-estimation", "post-editing", "translation", "behavioral-data", "multidimensional-quality-metric", "mqm", "comet", "qe" ]
[ "translation" ]
2024-09-28T08:48:51Z
null
--- annotations_creators: - machine-generated language_creators: - machine-generated - expert-generated language: - en - it - nl license: - apache-2.0 size_categories: - 10K<n<100K source_datasets: - Unbabel/TowerEval-Data-v0.1 task_categories: - translation pretty_name: qe4pe tags: - machine-translation - quality-estimation - post-editing - translation - behavioral-data - multidimensional-quality-metric - mqm - comet - qe configs: - config_name: main data_files: - split: train path: task/main/processed_main.csv - config_name: pretask data_files: - split: train path: task/pretask/processed_pretask.csv - config_name: posttask data_files: - split: train path: task/posttask/processed_posttask.csv - config_name: oracle_pe data_files: - split: train path: setup/highlights/oracle/processed_oracle_pe.csv - config_name: pretask_questionnaire data_files: - split: train path: questionnaires/pretask_results.csv - config_name: posttask_highlight_questionnaire data_files: - split: train path: questionnaires/posttask_highlight_results.csv - config_name: posttask_no_highlight_questionnaire data_files: - split: train path: questionnaires/posttask_no_highlight_results.csv --- # Quality Estimation for Post-Editing (QE4PE) *For more details on QE4PE, see our [paper](https://huggingface.co/papers/2503.03044) and our [Github repository](https://github.com/gsarti/qe4pe)* ## Dataset Description - **Source:** [Github](https://github.com/gsarti/qe4pe) - **Paper:** [Arxiv](https://huggingface.co/papers/2503.03044) - **Point of Contact:** [Gabriele Sarti](mailto:[email protected]) [Gabriele Sarti](https://gsarti.com) • [Vilém Zouhar](https://vilda.net/) • [Grzegorz Chrupała](https://grzegorz.chrupala.me/) • [Ana Guerberof Arenas](https://scholar.google.com/citations?user=i6bqaTsAAAAJ) • [Malvina Nissim](https://malvinanissim.github.io/) • [Arianna Bisazza](https://www.cs.rug.nl/~bisazza/) <p float="left"> <img src="https://github.com/gsarti/qe4pe/blob/main/figures/highlevel_qe4pe.png?raw=true" alt="QE4PE annotation pipeline" width=400/> </p> >Word-level quality estimation (QE) detects erroneous spans in machine translations, which can direct and facilitate human post-editing. While the accuracy of word-level QE systems has been assessed extensively, their usability and downstream influence on the speed, quality and editing choices of human post-editing remain understudied. Our QE4PE study investigates the impact of word-level QE on machine translation (MT) post-editing in a realistic setting involving 42 professional post-editors across two translation directions. We compare four error-span highlight modalities, including supervised and uncertainty-based word-level QE methods, for identifying potential errors in the outputs of a state-of-the-art neural MT model. Post-editing effort and productivity are estimated by behavioral logs, while quality improvements are assessed by word- and segment-level human annotation. We find that domain, language and editors' speed are critical factors in determining highlights' effectiveness, with modest differences between human-made and automated QE highlights underlining a gap between accuracy and usability in professional workflows. ### Dataset Summary This dataset provides a convenient access to the processed `pretask`, `main` and `posttask` splits and the questionnaires for the QE4PE study. A sample of challenging documents extracted from WMT23 evaluation data were machine translated from English to Italian and Dutch using [NLLB 3.3B](https://huggingface.co/facebook/nllb-200-3.3B), and post-edited by 12 translators per direction across 4 highlighting modalities employing various word-level quality estimation (QE) strategies to present translators with potential errors during the editing. Additional details are provided in the [main task readme](./task/main/README.md) and in our paper. During the post-editing, behavioral data (keystrokes, pauses and editing times) were collected using the [GroTE](https://github.com/gsarti/grote) online platform. For the main task, a subset of the data was annotated with Multidimensional Quality Metrics (MQM) by professional annotators. We publicly release the granular editing logs alongside the processed dataset to foster new research on the usability of word-level QE strategies in modern post-editing workflows. ### News 📢 **March 2025**: The QE4PE paper is available on [Arxiv](https://huggingface.co/papers/2503.03044). **January 2025**: MQM annotations are now available for the `main` task. **October 2024**: The QE4PE dataset is released on the HuggingFace Hub! 🎉 ### Repository Structure The repository is organized as follows: ```shell qe4pe/ ├── questionnaires/ # Configs and results for pre- and post-task questionnaires for translators │ ├── pretask_results.csv # Results of the pretask questionnaire, corresponding to the `pretask_questionnaire` configuration │ ├── posttask_highlight_results.csv # Results of the posttask questionnaire for highlighted modalities, corresponding to the `posttask_highlight_questionnaire` configuration │ ├── posttask_no_highlight_results.csv # Results of the posttask questionnaire for the `no_highlight` modality, corresponding to the `posttask_no_highlight_questionnaire` configuration │ └── ... # Configurations reporting the exact questionnaires questions and options. ├── setup/ │ ├── highlights/ # Outputs of word-level QE strategies used to setup highlighted spans in the tasks │ ├── qa/ # MQM/ESA annotations for the main task │ ├── processed/ # Intermediate outputs of the selection process for the main task │ └── wmt23/ # Original collection of WMT23 sources and machine-translated outputs └── task/ ├── example/ # Example folder with task structure ├── main/ # Main task data, logs, outputs and guidelines │ ├── ... │ ├── processed_main.csv # Processed main task data, corresponds to the `main` configuration │ └── README.md # Details about the main task ├── posttask/ # Posttask task data, logs, outputs and guidelines │ ├── ... │ ├── processed_main.csv # Processed posttask task data, corresponds to the `posttask` configuration │ └── README.md # Details about the post-task └── pretask/ # Pretask data, logs, outputs and guidelines ├── ... ├── processed_pretask.csv # Processed pretask data, corresponds to the `pretask` configuration └── README.md # Details about the pretask ``` ### Languages The language data of QE4PE is in English (BCP-47 `en`), Italian (BCP-47 `it`) and Dutch (BCP-47 `nl`). ## Dataset Structure ### Data Instances The dataset contains two configurations, corresponding to the two tasks: `pretask`, `main` and `posttask`. `main` contains the full data collected during the main task and analyzed during our experiments. `pretask` contains the data collected in the initial verification phase before the main task, in which all translators worked on texts highlighted in the `supervised` modality. `posttask` contains the data collected in the final phase in which all translators worked on texts in the `no_highlight` modality. ### Data Fields A single entry in the dataframe represents a segment (~sentence) in the dataset, that was machine-translated and post-edited by a professional translator. The following fields are contained in the training set: |Field |Description | |------------------------|-------------------------------------------------------------------------------------------------------------------------------------| | **Identification** | | |`unit_id` | The full entry identifier. Format: `qe4pe-{task_id}-{src_lang}-{tgt_lang}-{doc_id}-{segment_in_doc_id}-{translator_main_task_id}`. | |`wmt_id` | Identifier of the sentence in the original [WMT23](./data/setup/wmt23/wmttest2023.eng.jsonl) dataset. | |`wmt_category` | Category of the document: `biomedical` or `social` | |`doc_id` | The index of the document in the current configuration of the QE4PE dataset containing the current segment. | |`segment_in_doc_id` | The index of the segment inside the current document. | |`segment_id` | The index of the segment in the current configurations (i.e. concatenating all segments from all documents in order) | |`translator_pretask_id` | The identifier for the translator according to the `pretask` format before modality assignments: `tXX`. | |`translator_main_id` | The identifier for the translator according to the `main` task format after modality assignments: `{highlight_modality}_tXX`. | |`src_lang` | The source language of the segment. For QE4PE, this is always English (`eng`) | |`tgt_lang` | The target language of the segment: either Italian (`ita`) or Dutch (`nld`). | |`highlight_modality` | The highlighting modality used for the segment. Values: `no_highlight`, `oracle`, `supervised`, `unsupervised`. | | **Text statistics** | | |`src_num_chars` | Length of the source segment in number of characters. | |`mt_num_chars` | Length of the machine-translated segment in number of characters. | |`pe_num_chars` | Length of the post-edited segment in number of characters. | |`src_num_words` | Length of the source segment in number of words. | |`mt_num_words` | Length of the machine-translated segment in number of words. | |`pe_num_words` | Length of the post-edited segment in number of words. | |`num_minor_highlighted_chars` | Number of characters highlighted as minor errors in the machine-translated text. | |`num_major_highlighted_chars` | Number of characters highlighted as major errors in the machine-translated text. | |`num_minor_highlighted_words` | Number of words highlighted as minor errors in the machine-translated text. | |`num_major_highlighted_words` | Number of words highlighted as major errors in the machine-translated text. | | **Edits statistics** | | |`num_words_insert` | Number of post-editing insertions computed using [jiwer](https://github.com/jitsi/jiwer). | |`num_words_delete` | Number of post-editing deletions computed using [jiwer](https://github.com/jitsi/jiwer). | |`num_words_substitute` | Number of post-editing substitutions computed using [jiwer](https://github.com/jitsi/jiwer). | |`num_words_unchanged` | Number of post-editing hits computed using [jiwer](https://github.com/jitsi/jiwer). | |`tot_words_edits` | Total of all edit types for the sentence. | |`wer` | Word Error Rate score computed between `mt_text` and `pe_text` using [jiwer](https://github.com/jitsi/jiwer). | |`num_chars_insert` | Number of post-editing insertions computed using [jiwer](https://github.com/jitsi/jiwer). | |`num_chars_delete` | Number of post-editing deletions computed using [jiwer](https://github.com/jitsi/jiwer). | |`num_chars_substitute` | Number of post-editing substitutions computed using [jiwer](https://github.com/jitsi/jiwer). | |`num_chars_unchanged` | Number of post-editing hits computed using [jiwer](https://github.com/jitsi/jiwer). | |`tot_chars_edits` | Total of all edit types for the sentence. | |`cer` | Character Error Rate score computed between `mt_text` and `pe_text` using [jiwer](https://github.com/jitsi/jiwer). | | **Translation quality**| | |`mt_bleu_max` | Max BLEU score between `mt_text` and all `pe_text` for the corresponding segment using SacreBLEU with default parameters. | |`mt_bleu_min` | Min BLEU score between `mt_text` and all `pe_text` for the corresponding segment using SacreBLEU with default parameters. | |`mt_bleu_mean` | Mean BLEU score between `mt_text` and all `pe_text` for the corresponding segment using SacreBLEU with default parameters. | |`mt_bleu_std` | Standard deviation of BLEU scores between `mt_text` and all `pe_text` for the corresponding segment using SacreBLEU with default parameters. | |`mt_chrf_max` | Max chrF score between `mt_text` and all `pe_text` for the corresponding segment using SacreBLEU with default parameters. | |`mt_chrf_min` | Min chrF score between `mt_text` and all `pe_text` for the corresponding segment using SacreBLEU with default parameters. | |`mt_chrf_mean` | Mean chrF score between `mt_text` and all `pe_text` for the corresponding segment using SacreBLEU with default parameters. | |`mt_chrf_std` | Standard deviation of chrF scores between `mt_text` and all `pe_text` for the corresponding segment using SacreBLEU with default parameters. | |`mt_ter_max` | Max TER score between `mt_text` and all `pe_text` for the corresponding segment using SacreBLEU with default parameters. | |`mt_ter_min` | Min TER score between `mt_text` and all `pe_text` for the corresponding segment using SacreBLEU with default parameters. | |`mt_ter_mean` | Mean TER score between `mt_text` and all `pe_text` for the corresponding segment using SacreBLEU with default parameters. | |`mt_ter_std` | Standard deviation of TER scores between `mt_text` and all `pe_text` for the corresponding segment using SacreBLEU with default parameters. | |`mt_comet_max` | Max COMET sentence-level score for the `mt_text` and all `pe_text` for the corresponding segment using `Unbabel/wmt22-comet-da` with default parameters. | |`mt_comet_min` | Min COMET sentence-level score for the `mt_text` and all `pe_text` for the corresponding segment using `Unbabel/wmt22-comet-da` with default parameters. | |`mt_comet_mean` | Mean COMET sentence-level score for the `mt_text` and all `pe_text` for the corresponding segment using `Unbabel/wmt22-comet-da` with default parameters.| |`mt_comet_std` | Standard deviation of COMET sentence-level scores for the `mt_text` and all `pe_text` for the corresponding segment using `Unbabel/wmt22-comet-da` with default parameters. | |`mt_xcomet_qe` | `Unbabel/XCOMET-XXL` sentence-level quality estimation score for the mt_text. | |`mt_xcomet_errors` | List of error spans detected by `Unbabel/XCOMET-XXL` for the mt_text. | |`pe_bleu_max` | Max BLEU score between `pe_text` and all other `pe_text` for the corresponding segment using SacreBLEU with default parameters. | |`pe_bleu_min` | Min BLEU score between `pe_text` and all other `pe_text` for the corresponding segment using SacreBLEU with default parameters. | |`pe_bleu_mean` | Mean BLEU score between `pe_text` and all other `pe_text` for the corresponding segment using SacreBLEU with default parameters. | |`pe_bleu_std` | Standard deviation of BLEU scores between `pe_text` and all other `pe_text` for the corresponding segment using SacreBLEU with default parameters. | |`pe_chrf_max` | Max chrF score between `pe_text` and all other `pe_text` for the corresponding segment using SacreBLEU with default parameters. | |`pe_chrf_min` | Min chrF score between `pe_text` and all other `pe_text` for the corresponding segment using SacreBLEU with default parameters. | |`pe_chrf_mean` | Mean chrF score between `pe_text` and all other `pe_text` for the corresponding segment using SacreBLEU with default parameters. | |`pe_chrf_std` | Standard deviation of chrF scores between `pe_text` and all other `pe_text` for the corresponding segment using SacreBLEU with default parameters. | |`pe_ter_max` | Max TER score between `pe_text` and all other `pe_text` for the corresponding segment using SacreBLEU with default parameters. | |`pe_ter_min` | Min TER score between `pe_text` and all other `pe_text` for the corresponding segment using SacreBLEU with default parameters. | |`pe_ter_mean` | Mean TER score between `pe_text` and all other `pe_text` for the corresponding segment using SacreBLEU with default parameters. | |`pe_ter_std` | Standard deviation of TER scores between `pe_text` and all other `pe_text` for the corresponding segment using SacreBLEU with default parameters. | |`pe_comet_max` | Max COMET sentence-level score for the `pe_text` and all other `pe_text` for the corresponding segment using `Unbabel/wmt22-comet-da` with default parameters. | |`pe_comet_min` | Min COMET sentence-level score for the `pe_text` and all other `pe_text` for the corresponding segment using `Unbabel/wmt22-comet-da` with default parameters. | |`pe_comet_mean` | Mean COMET sentence-level score for the `pe_text` and all other `pe_text` for the corresponding segment using `Unbabel/wmt22-comet-da` with default parameters.| |`pe_comet_std` | Standard deviation of COMET sentence-level scores for the `pe_text` and all other `pe_text` for the corresponding segment using Unbabel/wmt22-comet-da with default parameters. | |`pe_xcomet_qe` | `Unbabel/XCOMET-XXL` sentence-level quality estimation score for the pe_text. | |`pe_xcomet_errors` | List of error spans detected by `Unbabel/XCOMET-XXL` for the pe_text. | | **Behavioral data** | | |`doc_num_edits` | Total number of edits performed by the translator on the current document. Only the last edit outputs are considered valid. | |`doc_edit_order` | Index corresponding to the current document edit order. If equal to `doc_id`, the document was edited in the given order. | |`doc_edit_time` | Total editing time for the current document in seconds (from `start` to `end`, no times ignored) | |`doc_edit_time_filtered`| Total editing time for the current document in seconds (from `start` to `end`, >5m pauses between logged actions ignored) | |`doc_keys_per_min` | Keystrokes per minute computed for the current document using `doc_edit_time_filtered`. | |`doc_chars_per_min` | Characters per minute computed for the current document using `doc_edit_time_filtered`. | |`doc_words_per_min` | Words per minute computed for the current document using `doc_edit_time_filtered`. | |`segment_num_edits` | Total number of edits performed by the translator on the current segment. Only edits for the last edit of the doc are considered valid. | |`segment_edit_order` | Index corresponding to the current segment edit order (only first `enter` action counts). If equal to `segment_in_doc_id`, the segment was edited in the given order. | |`segment_edit_time` | Total editing time for the current segment in seconds (summed time between `enter`-`exit` blocks) | |`segment_edit_time_filtered` | Total editing time for the current segment in seconds (>5m pauses between logged actions ignored). | |`segment_keys_per_min` | Keystrokes per minute computed for the current segment using `segment_edit_time_filtered`. | |`segment_chars_per_min` | Characters per minute computed for the current segment using `segment_edit_time_filtered`. | |`segment_words_per_min` | Words per minute computed for the current segment using `segment_edit_time_filtered`. | |`num_enter_actions` | Number of `enter` actions (focus on textbox) performed by the translator on the current segment during post-editing. | |`remove_highlights` | If True, the Clear Highlights button was pressed for this segment (always false for `no_highlight` modality). | |**Texts and annotations**| | |`src_text` | The original source segment from WMT23 requiring translation. | |`mt_text` | Output of the `NLLB-3.3B` model when translating `src_text` into `tgt_lang` (default config, 5 beams) | |`mt_text_highlighted` | Highlighted version of `mt_text` with potential errors according to the `highlight_modality`. | |`pe_text` | Post-edited version of `mt_text` produced by a professional translator with `highlight_modality`. | |`mt_pe_word_aligned` | Aligned visual representation of word-level edit operations (I = Insertion, D = Deletion, S = Substitution) (replace `\` with `\n` to show the three aligned rows). | |`mt_pe_char_aligned` | Aligned visual representation of character-level edit operations (I = Insertion, D = Deletion, S = Substitution) (replace `\` with `\n` to show the three aligned rows). | |`highlights` | List of dictionaries for highlighted spans with error severity and position, matching XCOMET format for word-level error annotations. | |**MQM annotations (`main` config only)**| | |`qa_mt_annotator_id` | Annotator ID for the MQM evaluation of `qa_mt_annotated_text`. | |`qa_pe_annotator_id` | Annotator ID for the MQM evaluation of `qa_pe_annotated_text`. | |`qa_mt_esa_rating` | 0-100 quality rating for the `qa_mt_annotated_text` translation, following the [ESA framework](https://aclanthology.org/2024.wmt-1.131/). | |`qa_pe_esa_rating` | 0-100 quality rating for the `qa_pe_annotated_text` translation, following the [ESA framework](https://aclanthology.org/2024.wmt-1.131/). | |`qa_mt_annotated_text` | Version of `mt_text` annotated with MQM errors. Might differ (only slightly) from `mt_text`, included since `qa_mt_mqm_errors` indices are computed on this string. | |`qa_pe_annotated_text` | Version of `pe_text` annotated with MQM errors. Might differ (only slightly) from `pe_text`, included since `qa_pe_mqm_errors` indices are computed on this string. | |`qa_mt_fixed_text` | Proposed correction of `mqm_mt_annotated_text` following MQM annotation. | |`qa_pe_fixed_text` | Proposed correction of `mqm_pe_annotated_text` following MQM annotation. | |`qa_mt_mqm_errors` | List of error spans detected by the MQM annotator for the `qa_mt_annotated_text`. Each error span dictionary contains the following fields: `text`: the span in `mqm_mt_annotated_text` containing an error. `text_start`: the start index of the error span in `qa_mt_annotated_text`. -1 if no annotated span is present (e.g. for omissions) `text_end`: the end index of the error span in `qa_mt_annotated_text`. -1 if no annotated span is present (e.g. for omissions) `correction`: the proposed correction in `qa_mt_fixed_text` for the error span in `qa_mt_annotated_text`. `correction_start`: the start index of the error span in `mqm_mt_fixed_text`. -1 if no corrected span is present (e.g. for additions) `correction_end`: the end index of the error span in `qa_mt_fixed_text`. -1 if no corrected span is present (e.g. for additions) `description`: an optional error description provided by the annotator. `mqm_category`: the error category assigned by the annotator for the current span. One of: Addition, Omission, Mistranslation, Inconsistency, Untranslated, Punctuation, Spelling, Grammar, Inconsistent Style, Readability, Wrong Register. `severity`: the error severity for the current span. One of: Minor, Major, Neutral. `comment`: an optional comment provided by the annotator for the current span. `edit_order`: index of the edit in the current segment edit order (starting from 1). | |`qa_pe_mqm_errors` | List of error spans detected by the MQM annotator for the `qa_pe_annotated_text`. Each error span dictionary contains the following fields: `text`: the span in `qa_pe_annotated_text` containing an error. `text_start`: the start index of the error span in `qa_pe_annotated_text`. -1 if no annotated span is present (e.g. for omissions) `text_end`: the end index of the error span in `qa_pe_annotated_text`. -1 if no annotated span is present (e.g. for omissions) `correction`: the proposed correction in `qa_pe_fixed_text` for the error span in `qa_pe_annotated_text`. `correction_start`: the start index of the error span in `qa_pe_fixed_text`. -1 if no corrected span is present (e.g. for additions) `correction_end`: the end index of the error span in `qa_pe_fixed_text`. -1 if no corrected span is present (e.g. for additions) `description`: an optional error description provided by the annotator. `mqm_category`: the error category assigned by the annotator for the current span. One of: Addition, Omission, Mistranslation, Inconsistency, Untranslated, Punctuation, Spelling, Grammar, Inconsistent Style, Readability, Wrong Register. `severity`: the error severity for the current span. One of: Minor, Major, Neutral. `comment`: an optional comment provided by the annotator for the current span. `edit_order`: index of the edit in the current segment edit order (starting from 1). | ### Data Splits |`config` | `split`| | |------------------------------------:|-------:|--------------------------------------------------------------:| |`main` | `train`| 8100 (51 docs i.e. 324 sents x 25 translators) | |`pretask` | `train`| 950 (6 docs i.e. 38 sents x 25 translators) | |`posttask` | `train`| 1200 (8 docs i.e. 50 sents x 24 translators) | |`oracle_pe` | `train`| 1944 (51 docs i.e. 324 sents x 6 translators) | |`pretask_questionnaire` | `train`| 26 (all translators, including replaced/replacements) | |`posttask_highlight_questionnaire` | `train`| 19 (all translators for highlight modalities + 1 replacement) | |`posttask_no_highlight_questionnaire`| `train`| 6 (all translators for `no_highlight` modality) | #### Train Split The `train` split contains the totality of triplets (or pairs, when translation from scratch is performed) annotated with behavioral data produced during the translation. The following is an example of the subject `oracle_t1` post-editing for segment `3` of `doc20` in the `eng-nld` direction of the `main` task. The fields `mt_pe_word_aligned` and `mt_pe_char_aligned` are shown over three lines to provide a visual understanding of their contents. ```python { # Identification "unit_id": "qe4pe-main-eng-nld-20-3-oracle_t1", "wmt_id": "doc5", "wmt_category": "biomedical", "doc_id": 20, "segment_in_doc_id": 3, "segment_id": 129, "translator_pretask_id": "t4", "translator_main_id": "oracle_t1", "src_lang": "eng", "tgt_lang": "nld", "highlight_modality": "oracle", # Text statistics "src_num_chars": 104, "mt_num_chars": 136, "pe_num_chars": 106, "src_num_words": 15, "mt_num_words": 16, "pe_num_words": 16, # Edits statistics "num_words_insert": 0, "num_words_delete": 0, "num_words_substitute": 1, "num_words_unchanged": 15, "tot_words_edits": 1, "wer": 0.0625, "num_chars_insert": 0, "num_chars_delete": 0, "num_chars_substitute": 6, "num_chars_unchanged": 100, "tot_chars_edits": 6, "cer": 0.0566, # Translation quality "mt_bleu_max": 100.0, "mt_bleu_min": 7.159, "mt_bleu_mean": 68.687, "mt_bleu_std": 31.287, "mt_chrf_max": 100.0, "mt_chrf_min": 45.374, "mt_chrf_mean": 83.683, "mt_chrf_std": 16.754, "mt_ter_max": 100.0, "mt_ter_min": 0.0, "mt_ter_mean": 23.912, "mt_ter_std": 29.274, "mt_comet_max": 0.977, "mt_comet_min": 0.837, "mt_comet_mean": 0.94, "mt_comet_std": 0.042, "mt_xcomet_qe": 0.985, "mt_xcomet_errors": "[]", "pe_bleu_max": 100.0, "pe_bleu_min": 11.644, "pe_bleu_mean": 61.335, "pe_bleu_std": 28.617, "pe_chrf_max": 100.0, "pe_chrf_min": 53.0, "pe_chrf_mean": 79.173, "pe_chrf_std": 13.679, "pe_ter_max": 100.0, "pe_ter_min": 0.0, "pe_ter_mean": 28.814, "pe_ter_std": 28.827, "pe_comet_max": 0.977, "pe_comet_min": 0.851, "pe_comet_mean": 0.937, "pe_comet_std": 0.035, "pe_xcomet_qe": 0.984, "pe_xcomet_errors": "[]", # Behavioral data "doc_num_edits": 103, "doc_edit_order": 20, "doc_edit_time": 118, "doc_edit_time_filtered": 118, "doc_keys_per_min": 52.37, "doc_chars_per_min": 584.24, "doc_words_per_min": 79.83, "segment_num_edits": 9, "segment_edit_order": 3, "segment_edit_time": 9, "segment_edit_time_filtered": 9, "segment_keys_per_min": 60.0, "segment_chars_per_min": 906.67, "segment_words_per_min": 106.67, "num_enter_actions": 2, "remove_highlights": False, # Texts and annotations "src_text": "The speed of its emerging growth frequently outpaces the development of quality assurance and education.", "mt_text": "De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en onderwijs.", "mt_text_highlighted": "De snelheid van de opkomende groei is vaak <minor>sneller</minor> dan de ontwikkeling van kwaliteitsborging en <major>onderwijs.</major>", "pe_text": "De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en opleiding.", "mt_pe_word_aligned": "MT: De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en onderwijs.\n" \ "PE: De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en opleiding.\n" \ " S", "mt_pe_char_aligned": "MT: De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en onderwijs.\n" \ "PE: De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en opleiding.\n" \ " SS SS SS ", "highlights": """[ { 'text': 'sneller', 'severity': 'minor', 'start': 43, 'end': 50 }, { 'text': 'onderwijs.', 'severity': 'major', 'start': 96, 'end': 106 } ]""" # QA annotations "qa_mt_annotator_id": 'qa_nld_3', "qa_pe_annotator_id": 'qa_nld_1', "qa_mt_esa_rating": 100.0, "qa_pe_esa_rating": 80.0, "qa_mt_annotated_text": "De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en onderwijs.", "qa_pe_annotated_text": "De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en opleiding.", "qa_mt_fixed_text": "De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en onderwijs.", "qa_pe_fixed_text": "De snelheid van de ontluikende groei overtreft vaak de ontwikkeling van kwaliteitsborging en onderwijs.", "qa_mt_mqm_errors": "[]", "qa_pe_mqm_errors": """[ { "text": "opkomende", "text_start": 19, "text_end": 28, "correction": "ontluikende", "correction_start": 19, "correction_end": 30, "description": "Mistranslation - not the correct word", "mqm_category": "Mistranslation", "severity": "Minor", "comment": "", "edit_order": 1 } ]""" } ``` The text is provided as-is, without further preprocessing or tokenization. ### Dataset Creation The datasets were parsed from GroTE inputs, logs and outputs for the QE4PE study, available in this repository. Processed dataframes using the `qe4pe process_task_data` command. Refer to the [QE4PE Github repository](https://github.com/gsarti/qe4pe) for additional details. The overall structure and processing of the dataset were inspired by the [DivEMT dataset](https://huggingface.co/datasets/GroNLP/divemt). ### QA Annotations MQM annotations were collected using Google Sheets and highlights were parsed from HTML exported output, ensuring their compliance with well-formedness checks. Out of the original 51 docs (324 segments) in `main`, 24 docs (10 biomedical, 14 social, totaling 148 segments) were samples at random and annotated by professional translators. ## Additional Information ### Metric signatures The following signatures correspond to the metrics reported in the processed dataframes: ```shell # Computed using SacreBLEU: https://github.com/mjpost/sacrebleu BLEU: case:mixed|eff:yes|tok:13a|smooth:exp|version:2.3.1 ChrF: case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.3.1 TER: case:lc|tok:tercom|norm:no|punct:yes|asian:no|version:2.3.1 # Computed using Unbabel COMET: https://github.com/Unbabel/COMET Comet: Python3.11.9|Comet2.2.2|fp32|Unbabel/wmt22-comet-da XComet: Python3.10.12|Comet2.2.1|fp32|Unbabel/XCOMET-XXL ``` ### Dataset Curators For problems related to this 🤗 Datasets version, please contact me at [[email protected]](mailto:[email protected]). ### Citation Information ```bibtex @misc{sarti-etal-2024-qe4pe, title={{QE4PE}: Word-level Quality Estimation for Human Post-Editing}, author={Gabriele Sarti and Vilém Zouhar and Grzegorz Chrupała and Ana Guerberof-Arenas and Malvina Nissim and Arianna Bisazza}, year={2025}, eprint={2503.03044}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2503.03044}, } ```
liguanwei/RandomPromptLoaderTwo
liguanwei
2025-04-30T12:19:25Z
0
0
[ "license:apache-2.0", "region:us" ]
[]
2025-04-30T11:40:51Z
null
--- license: apache-2.0 ---
shylee/eval_DP_so100_gauze_scratch_1e-4_ckpt000750
shylee
2025-04-30T12:15:01Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-04-30T12:14:56Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 1, "total_frames": 69, "total_tasks": 1, "total_videos": 3, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:1" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.FrontCam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.TopCam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.WristCam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
majwadalam/urdu_samples
majwadalam
2025-04-30T12:11:52Z
0
0
[ "region:us" ]
[]
2025-04-30T12:02:44Z
null
--- dataset_info: features: - name: audiopath dtype: string - name: text dtype: string - name: Normalized text dtype: string - name: sampling_rate dtype: int64 - name: duration dtype: float64 - name: audio dtype: audio splits: - name: train num_bytes: 629945847.0 num_examples: 119 download_size: 629168420 dataset_size: 629945847.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
HungVu2003/opt-350m_beta_1.0_alpha_0.6_num-company_3_dataset_1_for_gen_3
HungVu2003
2025-04-30T12:03:09Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T12:03:08Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 3593470 num_examples: 12500 download_size: 1904001 dataset_size: 3593470 configs: - config_name: default data_files: - split: train path: data/train-* ---
EYEDOL/mozilla_commonvoice_naijaYoruba1_preprocessed_train_batch_2
EYEDOL
2025-04-30T12:02:00Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T11:58:54Z
null
--- dataset_info: features: - name: audio dtype: audio: sampling_rate: 16000 - name: text dtype: string - name: input_length dtype: int64 - name: input_features sequence: sequence: float32 - name: labels sequence: int64 - name: labels_length dtype: int64 splits: - name: train num_bytes: 13935584804.75 num_examples: 12962 download_size: 3088877595 dataset_size: 13935584804.75 configs: - config_name: default data_files: - split: train path: data/train-* ---
LITTLEHIGH/wiki_kilt_baai_1.5B_bin
LITTLEHIGH
2025-04-30T11:59:13Z
0
0
[ "license:apache-2.0", "region:us" ]
[]
2025-04-30T11:59:13Z
null
--- license: apache-2.0 ---
shylee/eval_DP_so100_gauze_IMAGENET_1e-5_ckpt003000
shylee
2025-04-30T11:43:21Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-04-30T11:43:14Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 1, "total_frames": 275, "total_tasks": 1, "total_videos": 3, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:1" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.FrontCam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.TopCam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.WristCam": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
kaiserbuffle/so101test
kaiserbuffle
2025-04-30T11:40:02Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so101", "tutorial" ]
[ "robotics" ]
2025-04-30T11:39:57Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so101 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so101", "total_episodes": 2, "total_frames": 1773, "total_tasks": 1, "total_videos": 4, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.base": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
laurabraad/bertscore_df_steering
laurabraad
2025-04-30T11:38:32Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T11:38:30Z
null
--- dataset_info: features: - name: org_sentence dtype: string - name: pred_sentence dtype: string - name: flip dtype: string - name: precision dtype: float64 - name: recall dtype: float64 - name: f1 dtype: float64 splits: - name: train num_bytes: 204998 num_examples: 573 download_size: 91558 dataset_size: 204998 configs: - config_name: default data_files: - split: train path: data/train-* ---
milan-velinovski/ring-feature-chat-dataset-v2-direct
milan-velinovski
2025-04-30T11:37:26Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T11:37:25Z
null
--- dataset_info: features: - name: ring_id dtype: string - name: image_view dtype: string - name: category dtype: string - name: category_scope dtype: string - name: features_prompted sequence: string - name: messages sequence: - name: role dtype: string - name: content dtype: string splits: - name: train num_bytes: 44347 num_examples: 26 download_size: 22176 dataset_size: 44347 configs: - config_name: default data_files: - split: train path: data/train-* ---
orgcatorg/wikipedia
orgcatorg
2025-04-30T11:36:51Z
76
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-06-06T06:18:34Z
null
--- dataset_info: - config_name: bn features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string - name: en_url dtype: string - name: en_title dtype: string - name: en_text dtype: string splits: - name: train num_bytes: 1167115208 num_examples: 156143 download_size: 441690826 dataset_size: 1167115208 - config_name: hi features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string - name: en_url dtype: string - name: en_title dtype: string - name: en_text dtype: string splits: - name: train num_bytes: 793684300 num_examples: 166726 download_size: 302408181 dataset_size: 793684300 - config_name: id features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 1177273270 num_examples: 688206 download_size: 610697793 dataset_size: 1177273270 - config_name: ms features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: train num_bytes: 442552369 num_examples: 373189 download_size: 220484368 dataset_size: 442552369 - config_name: th features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string - name: en_url dtype: string - name: en_title dtype: string - name: en_text dtype: string splits: - name: train num_bytes: 4899327 num_examples: 48408 download_size: 2146000 dataset_size: 4899327 - config_name: tl features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string - name: en_url dtype: string - name: en_title dtype: string - name: en_text dtype: string splits: - name: train num_bytes: 53980052 num_examples: 48408 download_size: 30423055 dataset_size: 53980052 - config_name: vi features: - name: id dtype: string - name: url dtype: string - name: title dtype: string - name: text dtype: string - name: en_url dtype: string - name: en_title dtype: string - name: en_text dtype: string splits: - name: train num_bytes: 1938478921 num_examples: 1294721 download_size: 896915549 dataset_size: 1938478921 configs: - config_name: bn data_files: - split: train path: bn/train-* - config_name: hi data_files: - split: train path: hi/train-* - config_name: id data_files: - split: train path: id/train-* - config_name: ms data_files: - split: train path: ms/train-* - config_name: th data_files: - split: train path: th/train-* - config_name: tl data_files: - split: train path: tl/train-* - config_name: vi data_files: - split: train path: vi/train-* ---
CarolinePascal/plug_socket_mixed
CarolinePascal
2025-04-30T11:33:30Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:audio", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "audio" ]
[ "robotics" ]
2025-04-30T11:32:57Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - audio configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 50, "total_frames": 15095, "total_tasks": 1, "total_videos": 150, "total_audio": 150, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:50" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "audio_path": "audio/chunk-{episode_chunk:03d}/{audio_key}/episode_{episode_index:06d}.m4a", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.camera_1": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false } }, "observation.images.camera_2": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false } }, "observation.images.camera_3": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false } }, "observation.audio.camera_1": { "dtype": "audio", "shape": [ 1, 1 ], "names": "channels", "info": { "has_audio": true, "audio.channels": 1, "audio.codec": "aac", "audio.bit_rate": 69219, "audio.sample_rate": 48000, "audio.bit_depth": null, "audio.channel_layout": "mono" } }, "observation.audio.camera_2": { "dtype": "audio", "shape": [ 1, 1 ], "names": "channels", "info": { "has_audio": true, "audio.channels": 1, "audio.codec": "aac", "audio.bit_rate": 69223, "audio.sample_rate": 48000, "audio.bit_depth": null, "audio.channel_layout": "mono" } }, "observation.audio.camera_3": { "dtype": "audio", "shape": [ 1, 1 ], "names": "channels", "info": { "has_audio": true, "audio.channels": 1, "audio.codec": "aac", "audio.bit_rate": 69251, "audio.sample_rate": 48000, "audio.bit_depth": null, "audio.channel_layout": "mono" } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
alucchi/Qwen2.5-1.5B-Instruct_n1000_e12_oadam0.0001_b16_1_a10_flash_compact
alucchi
2025-04-30T11:15:18Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T11:15:06Z
null
--- dataset_info: - config_name: default features: - name: prompt dtype: string - name: generated_text dtype: string - name: generated_grid_rect sequence: sequence: int64 - name: task_solution sequence: sequence: sequence: int64 - name: match dtype: int64 splits: - name: train num_bytes: 56512 num_examples: 10 download_size: 14742 dataset_size: 56512 - config_name: main features: - name: prompt dtype: string - name: generated_text dtype: string - name: generated_grid_rect sequence: sequence: int64 - name: task_solution sequence: sequence: sequence: int64 - name: match dtype: int64 splits: - name: train num_bytes: 56512 num_examples: 10 download_size: 14742 dataset_size: 56512 configs: - config_name: default data_files: - split: train path: data/train-* - config_name: main data_files: - split: train path: main/train-* ---
dgambettaphd/D_llm2_gen5_run0_X_doc1000_synt64_tot128_lr5em5_SYNLAST
dgambettaphd
2025-04-30T11:13:19Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T11:12:13Z
null
--- dataset_info: features: - name: id_doc dtype: int64 - name: text dtype: string - name: dataset dtype: string - name: gen dtype: int64 - name: synt dtype: int64 - name: MPP dtype: float64 splits: - name: train num_bytes: 11848576 num_examples: 21000 download_size: 7145287 dataset_size: 11848576 configs: - config_name: default data_files: - split: train path: data/train-* ---
ParkSY/data_nerf_diversity_more_concept_with_colormap
ParkSY
2025-04-30T11:12:51Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T10:24:43Z
null
--- dataset_info: features: - name: input_image dtype: string - name: edit_prompt dtype: string - name: edited_image dtype: string - name: label dtype: int64 - name: depthmap dtype: string - name: water_color dtype: string splits: - name: train num_bytes: 2406306 num_examples: 6544 download_size: 211289 dataset_size: 2406306 configs: - config_name: default data_files: - split: train path: data/train-* ---
linoyts/wan_wrap_effect
linoyts
2025-04-30T11:12:11Z
0
0
[ "license:apache-2.0", "size_categories:n<1K", "modality:text", "modality:video", "library:datasets", "library:mlcroissant", "region:us", "text-to-video" ]
[]
2025-04-30T11:12:08Z
null
--- license: apache-2.0 tags: - text-to-video --- This dataset contains videos generated using Wan 2.1 T2V 14B.
timescale/pgai-docs
timescale
2025-04-30T11:10:13Z
123
0
[ "license:postgresql", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-17T15:50:39Z
null
--- license: postgresql configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: path dtype: string - name: title dtype: string - name: contents dtype: string splits: - name: train num_bytes: 191373 num_examples: 16 download_size: 83458 dataset_size: 191373 ---
HungVu2003/opt-350m_beta_0.5_alpha_0.4_num-company_3_dataset_1_for_gen_8
HungVu2003
2025-04-30T10:52:00Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T10:51:59Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 2821591 num_examples: 12498 download_size: 1529759 dataset_size: 2821591 configs: - config_name: default data_files: - split: train path: data/train-* ---
Rudrakshmital19/report4-dialogsum
Rudrakshmital19
2025-04-30T10:48:32Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T10:48:30Z
null
--- dataset_info: features: - name: id dtype: string - name: make dtype: string - name: model dtype: string - name: year dtype: string - name: registration_number dtype: string - name: engine_number dtype: string - name: chassis_number dtype: string - name: fuel_type dtype: string - name: mileage dtype: string - name: inspection_type dtype: string - name: requester_name dtype: string - name: section sequence: string - name: dialogue dtype: string - name: summary dtype: string splits: - name: train num_bytes: 4757 num_examples: 1 - name: validation num_bytes: 6084 num_examples: 1 - name: test num_bytes: 4790 num_examples: 1 download_size: 57882 dataset_size: 15631 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
dijisoz23/nutuk_mid_dataset
dijisoz23
2025-04-30T10:28:42Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T10:14:25Z
null
--- dataset_info: features: - name: question dtype: string - name: answer dtype: string - name: question_type dtype: string splits: - name: train num_bytes: 735396 num_examples: 2580 download_size: 373475 dataset_size: 735396 configs: - config_name: default data_files: - split: train path: data/train-* ---
ttn1410/Volume_smr
ttn1410
2025-04-30T10:27:54Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-29T17:03:18Z
null
--- dataset_info: features: - name: reports dtype: string - name: labels dtype: string splits: - name: train num_bytes: 39490384 num_examples: 15390 download_size: 7484076 dataset_size: 39490384 configs: - config_name: default data_files: - split: train path: data/train-* ---
Neooooo/structured_paper_summarization
Neooooo
2025-04-30T10:13:24Z
126
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-25T02:24:04Z
null
--- dataset_info: features: - name: title dtype: string - name: keywords sequence: string - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 1851098097.8341584 num_examples: 145064 - name: test num_bytes: 78063099.39124106 num_examples: 6653 download_size: 626249553 dataset_size: 1929161197.2253995 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* --- # structured_paper_summarization A **151 k‑example** dataset of chat‐style *prompt → structured abstract* pairs, built from ~19 000 research papers across business, management, information‑systems and social‑science domains. Each example shows the full paper (body text) being summarised into a five‑section Emerald‑style structured abstract (Purpose, Design/methodology/approach, Findings, Practical implications, Originality/value). --- ## Why this dataset? Large‑language models (LLMs) frequently struggle to: 1. **Condense long scientific prose** into factual, concise summaries. 2. **Follow rigid output structures** (e.g. subsection headings). This dataset targets both challenges simultaneously, enabling fine‑tuning or instruction‑tuning of LLMs that must output *structured* scholarly abstracts. --- ## At a glance | Split | Rows | Size (compressed) | |-------|------|-------------------| | train | **145 067** | 626 MB | | test | **6 650** | 29 MB | | **Total** | **151 717** | ≈655 MB | <sup>Counts taken from the Hugging Face viewer on 2025‑04‑29.</sup> --- ## Data schema ```text { title: string # Paper title keywords: list[string] # Author‑supplied keywords (0‑23) messages: list[dict] length ≥ 2 # ChatML‑style conversation } ``` ### `messages` format Each list contains alternating dictionaries with: - `role`: either `"user"` or `"assistant"`. - `content`: UTF‑8 text. Typical pattern (2 items): ```jsonc [ { "role": "user", "content": "Summarize the following paper into structured abstract.\n\n<full paper text>" }, { "role": "assistant", "content": "Purpose: …\nDesign/methodology/approach: …\nFindings: …\nPractical implications: …\nOriginality/value: …" } ] ``` Some papers are longer and may be truncated to ~8 k tokens. --- ## Loading the data ```python from datasets import load_dataset ds_train = load_dataset( "Neooooo/structured_paper_summarization", split="train" ) print(ds_train[0]["messages"][1]["content"][:500]) ``` The dataset is stored as Apache **Parquet** with streaming support; the example above requires ~5 s to start iterating with no local download. --- ## Suggested use‑cases * **Instruction‑tuning** chat LLMs for long‑document summarisation. * Research on **controlled text generation** and output formatting. * Training **retrieval‑augmented systems** that must cite sections of the source paper. --- ## Source & construction 1. Full‑text articles were collected via institutional access to the *Emerald Insight* corpus (open‑access + subscription). 2. The canonical *structured abstract* supplied by each journal was extracted as ground truth. 3. The article’s main body was embedded into a prompt of the form shown above. 4. Data were converted to Hugging Face `datasets` ➜ auto‑parquet. No additional manual cleaning was performed; typos and OCR artefacts may persist. --- ## Licensing & acceptable use The article texts are **copyright their original publishers/authors** and are redistributed here *solely for non‑commercial research*. By using this dataset you agree to: - **Not** redistribute the raw paper texts. - Cite the original articles in any derivative work. - Abide by Emerald’s usage policy and your local copyright laws. The **metadata & structured abstracts** are released under **CC BY‑NC 4.0**. For commercial licensing, please contact the original rights‑holders. --- ## Citation If you use this dataset, please cite: ```text @dataset{hu_2025_structured_prompts, author = {Xingyu Hu}, title = {structured_paper_summarization}, year = 2025, url = {https://huggingface.co/datasets/Neooooo/structured_paper_summarization}, note = {Version 1.0} } ``` --- ## Contributions Feel free to open PRs to: - Fix metadata errors. - Provide additional splits (validation, domain‑specific subsets). - Add scripts for evaluation or preprocessing. --- *Happy summarising!*
HungVu2003/opt-350m_beta_1.0_alpha_0.6_num-company_3_dataset_2_for_gen_2
HungVu2003
2025-04-30T10:11:13Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T10:11:12Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 2960469 num_examples: 12500 download_size: 1441478 dataset_size: 2960469 configs: - config_name: default data_files: - split: train path: data/train-* ---
Blancy/first-filtered-openr1-math-220k
Blancy
2025-04-30T10:03:39Z
86
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-23T07:39:50Z
null
--- dataset_info: features: - name: problem dtype: string - name: solution dtype: string - name: answer dtype: string - name: problem_type dtype: string - name: question_type dtype: string - name: source dtype: string - name: uuid dtype: string - name: is_reasoning_complete sequence: bool - name: generations dtype: string - name: correctness_math_verify sequence: bool - name: correctness_llama dtype: 'null' - name: finish_reasons sequence: string - name: correctness_count dtype: int64 - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 2289054244 num_examples: 64968 download_size: 1017569408 dataset_size: 2289054244 configs: - config_name: default data_files: - split: train path: data/train-* ---
EYEDOL/naija_commonvoice_naijaEnglish1_preprocessed_train_batch_3
EYEDOL
2025-04-30T09:56:45Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T09:56:34Z
null
--- dataset_info: features: - name: audio dtype: audio: sampling_rate: 16000 - name: sentence dtype: string - name: input_length dtype: int64 - name: input_features sequence: sequence: float32 - name: labels sequence: int64 - name: labels_length dtype: int64 splits: - name: test num_bytes: 448700764.0 num_examples: 341 download_size: 199057603 dataset_size: 448700764.0 configs: - config_name: default data_files: - split: test path: data/test-* ---
EYEDOL/naija_commonvoice_naijaEnglish1_preprocessed_train_batch_1
EYEDOL
2025-04-30T09:53:46Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T09:52:20Z
null
--- dataset_info: features: - name: audio dtype: audio: sampling_rate: 16000 - name: sentence dtype: string - name: input_length dtype: int64 - name: input_features sequence: sequence: float32 - name: labels sequence: int64 - name: labels_length dtype: int64 splits: - name: train num_bytes: 3646837252.875 num_examples: 2721 download_size: 1649827139 dataset_size: 3646837252.875 configs: - config_name: default data_files: - split: train path: data/train-* ---
HungVu2003/opt-350m_beta_0.5_alpha_0.4_num-company_3_dataset_2_for_gen_7
HungVu2003
2025-04-30T09:39:36Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T09:39:35Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 3066102 num_examples: 12498 download_size: 1102086 dataset_size: 3066102 configs: - config_name: default data_files: - split: train path: data/train-* ---
chsekhar2u/tripmate
chsekhar2u
2025-04-30T09:29:15Z
0
0
[ "license:apache-2.0", "region:us" ]
[]
2025-04-30T09:29:09Z
null
--- license: apache-2.0 ---
twinkle-ai/tw-reasoning-instruct-50k
twinkle-ai
2025-04-30T09:21:30Z
77
4
[ "task_categories:text-generation", "language:en", "language:zh", "license:mit", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "Taiwan", "R.O.C", "zh-tw", "reasoning", "legal", "instruct", "cha" ]
[ "text-generation" ]
2025-04-01T09:01:52Z
3
--- license: mit task_categories: - text-generation language: - en - zh tags: - Taiwan - R.O.C - zh-tw - reasoning - legal - instruct - cha size_categories: - 10K<n<100K pretty_name: Traditional Chinese Reasoning Instructions for Taiwan-Based NLP Tasks --- # Dataset Card for tw-reasoning-instruct-50k ![image/png](https://cdn-uploads.huggingface.co/production/uploads/618dc56cbc345ca7bf95f3cd/kL4fLBuXhnLfu-ApESCAA.png) <!-- Provide a quick summary of the dataset. --> **tw-reasoning-instruct-50k** 是一個精選的 繁體中文(台灣) 推理資料集,旨在提升語言模型於逐步邏輯思考、解釋生成與語言理解等任務中的表現。資料內容涵蓋日常思辨、教育對話、法律推理等多元主題,並結合「思考步驟」與「最終答案」的結構設計,引導模型以更清晰、條理分明的方式進行推論與回應,特別強調符合台灣本地語言與文化背景的應用需求。 ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> 本資料集專為發展具備強大推理能力的繁體中文大型語言模型(Large Reasoning Models, LRM)所設計,內容深度結合台灣的語言與文化脈絡。每筆資料通常包含使用者的提問、模型的回應,以及清楚的推理過程。資料集設計目標為培養模型具備類人邏輯的逐步思考與解釋能力。 此資料集適用於訓練與評估以下任務: - 台灣社會的日常推理 - 教育性對話 - 以解釋為導向的生成任務 所有內容均以繁體中文(zh-tw)撰寫或改寫,確保符合台灣社會常見用語與語境。 - **Curated by:** [Huang Liang Hsun](https://huggingface.co/lianghsun) - **Funded by:** [APMIC](https://www.apmic.ai/) - **Shared by:** [Huang Liang Hsun](https://huggingface.co/lianghsun) - **Language(s) (NLP):** Tranditional Chinese and English - **License:** MIT ### Dataset Sources <!-- Provide the basic links for the dataset. --> - **Repository:** [lianghsun/tw-reasoning-instruct-50k](https://huggingface.co/datasets/lianghsun/tw-reasoning-instruct-50k) ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> 本資料集主要用於訓練與評估繁體中文語言模型在下列任務中的表現: - 具邏輯性的步驟式推理(step-by-step reasoning) - 回答時附帶清楚說明的解釋生成任務(explanation generation) - 教育類對話與知識傳遞 - 法律、學術或通識領域的理解與分析任務 特別適用於強化模型在繁體中文語境中之邏輯推論與表達能力。 ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> - 自動生成法律意見或做出實際法律建議 - 用於高風險決策系統,如醫療診斷、金融投資建議等 - 任何違反社會倫理之惡意用途,例如散佈錯誤資訊、操弄輿論或偽造對話內容 - 用於與繁體中文語境不相符的任務,如簡體中文、大陸用語習慣分析等,可能導致表現失準 ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> ```json { "input": # 使用者提出的問題 "think": # 模型的推理思考過程(以 <think> 標記開頭) "output": # 模型對使用者問題的最終回應 "conversations": [ {"from": "human", "value": ""}, # 與 input 相同的問題 {"from": "gpt", "value": ""} # 包含推理與回答的完整對話內容 ], "seed": # 該問題的主題或原始問題意圖描述 } ``` ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> 本資料集旨在補足目前繁體中文語境中缺乏高品質推理訓練資料的缺口。現有多數中文語料偏重於問答、閒聊或簡單指令回應,缺乏能培養模型「逐步思考」、「多層邏輯分析」與「具備理由的回答」能力的資料。本資料集專注於收集與製作涵蓋教育、法律、學術、哲學與社會議題的推理型資料,並強調以繁體中文表達人類邏輯思考過程。其目的如下: - 建立符合臺灣語言文化的邏輯推理標準資料。 - 提供訓練模型產出更具解釋力、邏輯性與知識性的輸出樣本。 - 支援教育應用、法律科技與邏輯理解等 AI 任務的模型開發。 ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> 本資料集以繁體中文(臺灣)為核心,可能不適用於其他語境。推理內容來自模型生成,雖強調邏輯性,仍可能出現錯誤或偏誤,使用時需謹慎驗證。不建議直接應用於法律、醫療、金融等高風險場域。教育應用中亦應搭配人類審閱,避免過度依賴模型輸出。 ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> 使用者應充分了解本資料集在語言範疇、邏輯推理與知識正確性方面的潛在偏誤與限制。建議僅將其用於研究或模型訓練階段,避免直接應用於高風險情境,如法律或醫療決策。所有輸出內容應搭配人類審查與驗證,以確保其可靠性與適切性。 ## Citation <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> 如果您使用本資料集,請引用: ```yaml @misc{huang2025twreasoninginstruct, author = {Twinkle AI, Huang, Liang Hsun}, title = {tw-reasoning-instruct: Traditional Chinese Reasoning Instructions for Taiwan-Based NLP Tasks}, year = {2025}, publisher = {Hugging Face}, howpublished = {\url{https://huggingface.co/datasets/lianghsun/tw-reasoning-instruct}}, note = {A curated reasoning dataset in Traditional Chinese (Taiwan), designed for instruction-tuned LLM development.} } ``` ## Dataset Card Authors [Twinkle AI](https://huggingface.co/twinkle-ai) ## Dataset Card Contact [Twinkle AI](https://huggingface.co/twinkle-ai)
SayantanJoker/Shrutilipi_Hindi_resampled_44100_merged_15
SayantanJoker
2025-04-30T09:14:50Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T06:19:44Z
null
--- dataset_info: features: - name: audio dtype: audio - name: transcription dtype: string - name: file_name dtype: string splits: - name: train num_bytes: 20643582737.575 num_examples: 34675 download_size: 20582018763 dataset_size: 20643582737.575 configs: - config_name: default data_files: - split: train path: data/train-* ---
korbih/ui-sensei-curriculum-0-test-20250424_213955-completepostprocessed-grpo-format
korbih
2025-04-30T09:14:48Z
8
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-29T14:06:54Z
null
--- dataset_info: features: - name: base_uid dtype: string - name: step dtype: int32 - name: messages list: - name: content dtype: string - name: role dtype: string - name: image_name dtype: string - name: start_url dtype: string - name: image dtype: image splits: - name: train num_bytes: 5843914.0 num_examples: 81 download_size: 4959265 dataset_size: 5843914.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
korbih/ui-sensei-curriculum-0-test-20250424_213955-complete-double_checked
korbih
2025-04-30T09:12:49Z
4
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-29T14:21:58Z
null
--- dataset_info: features: - name: task_id dtype: string - name: trial_number dtype: int32 - name: task_description dtype: string - name: start_url dtype: string - name: is_success dtype: bool - name: is_shortest dtype: bool - name: evaluator_thoughts dtype: string - name: evaluator_status dtype: string - name: run_error dtype: string - name: step_index dtype: int32 - name: url_at_step dtype: string - name: prompt dtype: string - name: action dtype: string - name: screenshot struct: - name: bytes dtype: binary - name: path dtype: string - name: annotated_screenshot struct: - name: bytes dtype: binary - name: path dtype: string - name: is_success_original dtype: bool - name: evaluator_thoughts_original dtype: string - name: double_checked dtype: bool splits: - name: train num_bytes: 2158616644 num_examples: 5550 download_size: 1092809999 dataset_size: 2158616644 configs: - config_name: default data_files: - split: train path: data/train-* ---
linoyts/wan_wiping_surface
linoyts
2025-04-30T09:08:10Z
0
0
[ "license:apache-2.0", "size_categories:n<1K", "modality:text", "modality:video", "library:datasets", "library:mlcroissant", "region:us", "text-to-video" ]
[]
2025-04-30T09:08:08Z
null
--- license: apache-2.0 tags: - text-to-video --- This dataset contains videos generated using Wan 2.1 T2V 14B.
hypaai/nv_yo_2_2_wspr
hypaai
2025-04-30T09:07:37Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T08:53:50Z
null
--- dataset_info: features: - name: input_features sequence: sequence: sequence: float32 - name: labels sequence: sequence: int64 splits: - name: train num_bytes: 49803731024.0 num_examples: 51846 download_size: 6666267551 dataset_size: 49803731024.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
russwest404/kilt_index
russwest404
2025-04-30T09:06:22Z
0
0
[ "license:apache-2.0", "region:us" ]
[]
2025-04-30T07:16:28Z
null
--- license: apache-2.0 ---
danelbaz/some_name_for_hub
danelbaz
2025-04-30T09:04:22Z
235
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-17T07:37:09Z
null
--- dataset_info: config_name: None--evals features: - name: n dtype: int64 - name: acc_naive dtype: float64 - name: acc_weighted dtype: float64 - name: acc_maj dtype: float64 splits: - name: train num_bytes: 32 num_examples: 1 download_size: 1961 dataset_size: 32 configs: - config_name: None--evals data_files: - split: train path: None--evals/train-* ---
SayantanJoker/Shrutilipi_Hindi_resampled_44100_merged_14
SayantanJoker
2025-04-30T09:02:48Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T08:42:48Z
null
--- dataset_info: features: - name: audio dtype: audio - name: transcription dtype: string - name: file_name dtype: string splits: - name: train num_bytes: 29755767031.0 num_examples: 50000 download_size: 29657721744 dataset_size: 29755767031.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
HungVu2003/opt-350m_beta_1.0_alpha_0.6_num-company_3_dataset_1_for_gen_2
HungVu2003
2025-04-30T08:58:41Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T08:58:39Z
null
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 3630075 num_examples: 12500 download_size: 1911834 dataset_size: 3630075 configs: - config_name: default data_files: - split: train path: data/train-* ---
kothasuhas/multi-gold-37M-e2-N1.50M-mix8-iter3
kothasuhas
2025-04-30T08:51:33Z
0
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-30T08:49:53Z
null
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 3866043980 num_examples: 1500000 - name: validation num_bytes: 8574979 num_examples: 1000 download_size: 2439224326 dataset_size: 3874618959 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
maritaca-ai/oab-bench
maritaca-ai
2025-04-29T19:35:21Z
2
2
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-29T19:24:44Z
2
--- dataset_info: - config_name: questions features: - name: question_id dtype: string - name: category dtype: string - name: statement dtype: string - name: turns sequence: string - name: values sequence: float64 - name: system dtype: string splits: - name: train num_bytes: 381205 num_examples: 105 download_size: 116453 dataset_size: 381205 - config_name: guidelines features: - name: question_id dtype: string - name: answer_id dtype: string - name: model_id dtype: string - name: choices list: - name: index dtype: int64 - name: tstamp dtype: float64 - name: turns sequence: string - name: tstamp dtype: float64 splits: - name: train num_bytes: 407473 num_examples: 105 download_size: 114197 dataset_size: 407473 configs: - config_name: questions data_files: - split: train path: questions/train-* - config_name: guidelines data_files: - split: train path: guidelines/train-* --- # OAB-Bench | [**Paper**](https://arxiv.org/abs/XXXX.XXXXX) | [**Code**](https://github.com/maritaca-ai/oab-bench) | OAB-Bench is a benchmark for evaluating Large Language Models (LLMs) on legal writing tasks, specifically designed for the Brazilian Bar Examination (OAB). The benchmark comprises 105 questions across seven areas of law from recent editions of the exam. - OAB-Bench evaluates LLMs on their ability to write legal documents and answer discursive questions - The benchmark includes comprehensive evaluation guidelines used by human examiners - Results show that frontier models like Claude-3.5 Sonnet can achieve passing grades (≥6.0) in most exams - The evaluation pipeline uses LLMs as automated judges, achieving strong correlation with human scores ## Results Our evaluation of four LLMs on OAB-Bench shows: | Model | Average Score | Passing Rate | Best Area | | --- | --- | --- | --- | | Claude-3.5 Sonnet | 7.93 | 100% | Constitutional Law (8.43) | | GPT-4o | 6.87 | 86% | Civil Law (7.42) | | Sabiá-3 | 6.55 | 76% | Labor Law (7.17) | | Qwen2.5-72B | 5.21 | 24% | Administrative Law (7.00) | The LLM judge (o1) shows strong correlation with human scores when evaluating approved exams, with Mean Absolute Error (MAE) ranging from 0.04 to 0.28 across different law areas. ## Citation If you find this work helpful, please cite our paper: ``` @inproceedings{pires2025automatic, title={Automatic Legal Writing Evaluation of LLMs}, author={Pires, Ramon and Malaquias Junior, Roseval and Nogueira, Rodrigo}, booktitle={Proceedings of the International Conference on Artificial Intelligence and Law (ICAIL)}, year={2025} } ```
Qwen/PolyMath
Qwen
2025-04-29T08:00:02Z
18
3
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2504.18428", "region:us" ]
[]
2025-04-25T14:37:14Z
3
--- configs: - config_name: ar data_files: - split: top path: ar/top.parquet - split: high path: ar/high.parquet - split: medium path: ar/medium.parquet - split: low path: ar/low.parquet - config_name: bn data_files: - split: top path: bn/top.parquet - split: high path: bn/high.parquet - split: medium path: bn/medium.parquet - split: low path: bn/low.parquet - config_name: de data_files: - split: top path: de/top.parquet - split: high path: de/high.parquet - split: medium path: de/medium.parquet - split: low path: de/low.parquet - config_name: en data_files: - split: top path: en/top.parquet - split: high path: en/high.parquet - split: medium path: en/medium.parquet - split: low path: en/low.parquet - config_name: es data_files: - split: top path: es/top.parquet - split: high path: es/high.parquet - split: medium path: es/medium.parquet - split: low path: es/low.parquet - config_name: fr data_files: - split: top path: fr/top.parquet - split: high path: fr/high.parquet - split: medium path: fr/medium.parquet - split: low path: fr/low.parquet - config_name: id data_files: - split: top path: id/top.parquet - split: high path: id/high.parquet - split: medium path: id/medium.parquet - split: low path: id/low.parquet - config_name: it data_files: - split: top path: it/top.parquet - split: high path: it/high.parquet - split: medium path: it/medium.parquet - split: low path: it/low.parquet - config_name: ja data_files: - split: top path: ja/top.parquet - split: high path: ja/high.parquet - split: medium path: ja/medium.parquet - split: low path: ja/low.parquet - config_name: ko data_files: - split: top path: ko/top.parquet - split: high path: ko/high.parquet - split: medium path: ko/medium.parquet - split: low path: ko/low.parquet - config_name: ms data_files: - split: top path: ms/top.parquet - split: high path: ms/high.parquet - split: medium path: ms/medium.parquet - split: low path: ms/low.parquet - config_name: pt data_files: - split: top path: pt/top.parquet - split: high path: pt/high.parquet - split: medium path: pt/medium.parquet - split: low path: pt/low.parquet - config_name: ru data_files: - split: top path: ru/top.parquet - split: high path: ru/high.parquet - split: medium path: ru/medium.parquet - split: low path: ru/low.parquet - config_name: sw data_files: - split: top path: sw/top.parquet - split: high path: sw/high.parquet - split: medium path: sw/medium.parquet - split: low path: sw/low.parquet - config_name: te data_files: - split: top path: te/top.parquet - split: high path: te/high.parquet - split: medium path: te/medium.parquet - split: low path: te/low.parquet - config_name: th data_files: - split: top path: th/top.parquet - split: high path: th/high.parquet - split: medium path: th/medium.parquet - split: low path: th/low.parquet - config_name: vi data_files: - split: top path: vi/top.parquet - split: high path: vi/high.parquet - split: medium path: vi/medium.parquet - split: low path: vi/low.parquet - config_name: zh data_files: - split: top path: zh/top.parquet - split: high path: zh/high.parquet - split: medium path: zh/medium.parquet - split: low path: zh/low.parquet --- <div align="center"> <h2> PolyMath: Evaluating Mathematical Reasoning in Multilingual Contexts </h2> </div> <div align="center"> <a href="https://arxiv.org/abs/2504.18428"> <img src="https://img.shields.io/badge/arXiv-2504.18428-b31b1b.svg?logo=arxiv" alt="arXiv Badge"/> </a> <a href="https://github.com/QwenLM/PolyMath"> <img src="https://img.shields.io/badge/GitHub-Code-black?logo=github" alt="GitHub Badge"/> </a> </div> **PolyMath** is a multilingual mathematical reasoning benchmark **covering 18 languages** and **4 easy-to-hard difficulty levels**. Our benchmark ensures *difficulty comprehensiveness*, *language diversity*, and *high-quality translation*, making it a highly discriminative multilingual mathematical benchmark in the era of reasoning LLMs. - 📈 **Broad Difficulty Range:** PolyMath defines and partitions mathematical difficulty across four levels using two core dimensions: **Thought Depth** and **Knowledge Breadth**, ranging from K-12 to Olympiad and advanced frontier mathematics, with 125 problems per language at each level. <div align="center"> <img src="_ASSETS/level.png" alt="logo" width="85%"/> </div> - 🌍 **Language Diversity:** Each problem in PolyMath is available in **18 parallel language versions**, encompassing **over 75% of the world’s native speakers** and major language families, ensuring diversity across both high-resource and low-resource languages. <div align="center"> <img src="_ASSETS/language.png" alt="logo" width="50%"/> </div> - 🧑‍🏫 **High-Quality Annotation:** Each problem translation is **calibrated by language experts**, avoiding direct use of LLM-generated outputs and ensuring precise term and logical clarity. <div align="center"> <img src="_ASSETS/human.png" alt="logo" width="90%"/> </div> --- ## 📊 Main Results The leaderboard is continuously updated! See https://qwen-polymath.github.io/#leaderboard --- ## 📄 Citation If you use **PolyMath** in your research, please cite us: ```bibtex @misc{wang2025polymath, title={PolyMath: Evaluating Mathematical Reasoning in Multilingual Contexts}, author={Yiming Wang and Pei Zhang and Jialong Tang and Haoran Wei and Baosong Yang and Rui Wang and Chenshu Sun and Feitong Sun and Jiran Zhang and Junxuan Wu and Qiqian Cang and Yichang Zhang and Fei Huang and Junyang Lin and Fei Huang and Jingren Zhou}, year={2025}, eprint={2504.18428}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2504.18428}, } ```